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I.1.3 (partially), I.2.4, I.2.5, I.2.6.

1.1. A bit of history. Complex numbers did not appear because someone really
wanted to solve the equation x2 = −1. No solution, no problem, nobody cares,
end of story. Instead, they came into consideration (around 16th century, Italy)
when someone was interested in questions that were formulated in terms of real
numbers and had answers in terms of real numbers, but required going outside of
real number system in order to obtain those answers. The question was simple:
solve a cubic equation x3 + ax2 + bx + c = 0. Without worrying too much about
details (like whether a, b, c are real, integer, complex, or something else), let’s see
how the solution goes.

First of all, the substitution x = y − a
3 eliminates the quadratic term:

x3 + ax2 + bx+ c = (y − a
3 )3 + a(y − a

3 )2 + b(y − a
3 ) + c =

= (y3 − 3y2 a
3 + 3y(a3 )2 − (a3 )3) +

+ a(y2 − 2y a3 + (a3 )2) + b(y − a
3 ) + c =

= y3 + py + q,

with appropriate p, q. Therefore, it suffices to solve the latter cubic equation (called
a depressed cubic). Make another substitution y = α+ β:

(α+ β)3 + p(α+ β) + q = α3 + 3α2β + 3αβ2 + β3 + p(α+ β) + q =

= α3 + β3 + 3αβ(α+ β) + p(α+ β) + q =

= α3 + β3 + (3αβ + p)(α+ β) + q.

Since for each given y we have freedom in choosing α, β, as long as α + β = y, we
impose an additional condition: 3αβ + p = 0, which gives us the equation

α3 + β3 + 0 · (α+ β) + q = α3 + β3 + q = 0.

So if we manage to solve the system{
αβ = −p/3,

α3 + β3 = −q,
then we can immediately express the solution as α + β. Raising first equation to
third power, we get a system  α3β3 = −p

3

27
,

α3 + β3 = −q

on α3, β3. Solutions of such system are roots of the quadratic equation u2 +qu− p3

27 ,
which can be easily found:

α3, β3 =
q

2
±
√
q2

4
+
p3

27
.

Recall that y = α+ β, so

(1) y =
3

√
q

2
−
√
q2

4
+
p3

27
+

3

√
q

2
+

√
q2

4
+
p3

27
.

This formula is called Cardano’s formula (it wasn’t Cardano who came up with
this, though).
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We skipped quite a few details in the above argument, but let’s just see how this
works on a specific example. Consider the equation y3− 15y− 4 = 0. By the above
formula we get that the number

y0 =
3

√
−4

2
−
√

42

4
− 153

27
+

3

√
−4

2
+

√
42

4
− 153

27
=

=
3

√
−2−

√
−121 +

3

√
−2 +

√
−121 =

=
3

√
−2− 11

√
−1 +

3

√
−2 + 11

√
−1

is a solution. This looks like some complex number. One problem, though: 4 is a
root of y3−15y−4. Is the above actually equal to 4? Maybe this equation has some
complex roots, and this is one of them? Actually, it is not hard to see that all three
roots of y3−15y−4 are real, either by expressing y3−15y−4 = (y−4)(y2−4y+1)
and solving the quadratic, or by taking the derivative (y3 − 15y − 4)′ and looking
where local extrema of y3 − 15y − 4 are. So the above expression is actually a real
number.

(One might argue that we don’t really need this complicated procedure, since
we could just guess the root 4. However, for example, y3 − 6y + 2 has three not
easily guessable real roots and also has negative number under the square root in
Cardano’s formula.)

So here is the punchline: we asked a question about real numbers, the question
has three real numbers as an answer, but to get this answer we need complex
numbers. That is why complex numbers (gradually and slowly) became recognized
as a valid object: despite looking really suspicious to a lot of mathematicians1 they
were successfully used to deal with questions that seemingly had anything to do
only with the real number system.

1.2. Basic Definitions. Geometry of C.

Definition 1. Complex numbers are expressions of the form

a+ bi,

with a, b ∈ R and i2 = −1, treated as binomials a+ bx, except that rule

i2 = −1, i3 = −i, i4 = 1, i5 = i, . . .

is used to eliminate any powers of i higher than the first. Set of complex numbers
is denoted by C.

There are other, easily equivalent, definitions that appear to be more formal.

Definition 2.

C =

{(
a b
−b a

)
: a, b ∈ R

}
.

Definition 3. C is a set {(a, b)|a, b ∈ R} with operations

(a1, b1) + (a2, b2) = (a1 + a2, b1 + b2)

and

(a1, b1) · (a2, b2) = (a1a2 − b1b2, a1b2 + a2b1).

1Not without reason. “1 =
√

1 =
√

(−1)(−1) =
√
−1
√
−1 = i · i = −1.” Huh?
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Definition 4. C is a quotient ring R[x]
/
(x2 + 1).

The number i is called the imaginary unit. For z ∈ C, z = a + bi, the real
number a is called the real part of z, and the real number b is called the imaginary
part of z. Notation: a = Re z, b = Im z.

Regardless of which definition one prefers, one can also think of complex numbers
as points or vectors on a Euclidian plane: a+ bi↔ (a, b).

For a complex number z = a+ bi, its modulus, or absolute value is the length of
the corresponding vector:

|z| =
√
a2 + b2.

If z is a nonzero complex number, so the corresponding vector has nonzero length,
denote ϕ to be an angle between x-axis of Euclidean plane and vector corresponding
to z. Then x = |z| · cosϕ and y = |z| · sinϕ. Note that such ϕ is only defined up to
2πn. For a given z ∈ C, the set of all such values of ϕ is called the argument of z
and denoted Arg z, so

Arg z = {. . . , ϕ− 4π, ϕ− 2π, ϕ, ϕ+ 2π, ϕ+ 4π, . . .}.

An angle ϕ ∈ Arg z such that −π < ϕ ≤ π is called the principal value of
argument of z and denoted ϕ = arg z.

When it does not lead to ambiguity, we will abuse terminology and say ϕ = Arg z
instead of ϕ ∈ Arg z.

If |z| = r, ϕ ∈ Arg z, we have

z = r(cosϕ+ i sinϕ).

The latter expression is called the trigonometric form of the complex number z.
Note that for z = r(cosϕ+ i sinϕ), w = s(cosψ + i sinψ), we have

(2) zw = rs(cosϕ+ i sinϕ)(cosψ + i sinψ) = rs(cos(ϕ+ ψ) + i sin(ϕ+ ψ)).

In other words, |zw| = |z| · |w|, and Arg (zw) = Arg (z) + Arg (w). However, note
that in general it is not true that arg (zw) = arg (z) + arg (w).

The following special case

(3) (cosϕ+ i sinϕ)n = cosnϕ+ i sinnϕ

of (2) is called De Moivre’s formula.
Another notation for the trigonometric form is z = reiϕ, where (at this point of

the course) eiϕ is merely a notation for

eiϕ = cosϕ+ i sinϕ.

1.2.1. Geometric interpretation of complex multiplication. Note that if we fix z0 ∈
C, z0 6= 0, and multiply every complex number by z0, the following will happen.
First of all, all distances get multiplied by |z0|; indeed, distance between z1, z2 is
|z2 − z1|, and after multiplication it is |z0z2 − z0z1|, which is equal to |z0| · |z2 −
z1|. Second, every line passing through origin is rotated by Arg z0. Therefore,
geometrically multiplication by z0 is rotation by Arg z0 and dilatation by a factor
of |z0|.



6 ANDREY NIKOLAEV

1.2.2. C as a vector space. One may also view C as a two-dimensional vector space
over R. Notice that the linear operator of multiplication by a+ bi,

x+ iy 7→ (a+ bi)(x+ iy),

in the basis 1, i has precisely the matrix(
a b
−b a

)
,

which explains where Definition 2 comes from. Also, observe that for z = a + bi,
the determinant of the corresponding matrix is a2 + b2 = |z|2, which of course
was inevitable since the determinant of an operator is the coefficient by which the
operator distorts the volume (in this case, area).

1.3. Algebraic properties of C. C is a field with respect to addition and multi-
plication, that is, the following nine axioms hold:

(A1) z + w = w + z for all z, w ∈ C,
(A2) (z + w) + u = z + (w + u) for all z, w, u ∈ C,
(A3) there exists 0 ∈ C s.t. 0 + z = z + 0 = z for all z ∈ C,
(A4) for each z ∈ C there exists an element −z s.t. z + (−z) = (−z) + z = 0,
(M1) zw = wz for all z, w ∈ C,
(M2) (zw)u = z(wu) for all z, w, u ∈ C,
(M3) there exists 1 ∈ C s.t. 1 · z = z · 1 = z for all z ∈ C,
(M4) for each z 6= 0 in C there exists an element 1/z s.t. z · (1/z) = (1/z) · z = 1,

(D) z(w + u) = zw + zu and (w + u)z = wz + uz for all z, w, u ∈ C.

Note that Definition 1 does not change if we replace i with j = −i. Therefore,
the mapping

x+ yi→ x− yi
is an automorphism of C (that preserves R). This mapping is called the complex
conjugation and denoted z̄ = x− yi. The number z̄ is called the complex conjugate
of z. In other words, for any z, w ∈ C,

zw = z · w, z + w = z + w.

If replacing i with −i is not convincing, one can, of course, check the two latter
equalities explicitly.

Note that zz̄ = |z|2, which is a non-negative real number. Using this, one
can prove M4 (other properties A1–A4, M1–M3, D are either obvious, or checked
straightforwardly). If x+ yi 6= 0, that is x2 + y2 6= 0, we have

1

x+ yi
=

x− yi
(x+ yi)(x− yi) =

x− yi
x2 + y2

=
x

x2 + y2
+

−y
x2 + y2

i.

One can easily show that |z| is actually a norm (on C as a vector space over R).
In particular

|z1 + z2| ≤ |z1|+ |z2|
(if you are not comfortable with the notion of norm, this inequality equally well
follows from the observation that |z| is just the Euclidean the length of the corre-
sponding vector).

Another useful thing to keep in mind is that real and imaginary parts of z ∈ C
can be easily expressed through z and z̄,

Re z =
1

2
(z + z̄), Im z =

1

2i
(z − z̄).
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1.3.1. Order on C. There is no order on C that agrees with arithmetic operations.
In fact, there is no order that agrees with just the multiplication. Indeed, suppose
we have a way of assigning some complex numbers z to be positive, denoted z > 0,
so that two things take place:

(1) For each z, either z = 0, or z > 0, or −z > 0 (exclusively).
(2) For each z1 > 0 and z2 > 0, it follows that z1z2 > 0.

Then either i > 0, so by (2) we have −1 = i2 > 0, or −i > 0, so −1 = (−i)2 > 0.
But for the same reason 1 = 12 = (−1)2 > 0, so both −1 > 0 and 1 > 0,
contradicting (1).

(If you are curios about proper definition of order, look it up in any analysis or
algebra textbook.)

1.4. Complex roots. Consider the equation

zn = w,

where w is a fixed complex number, n is a positive integer, and z is the unknown.
Put

w = R(cosα+ i sinα), z = r(cosϕ+ i sinϕ).

Then by De Moivre’s formula (3), or just by (2), we have

rn(cosnϕ+ i sinnϕ) = R(cosα+ i sinα),

so r = n
√
R (just an arithmetic root of a positive number), and

nϕ = α+ 2πk.

Therefore, there are n possible values for ϕ that result in different solutions:

ϕj =
α

n
+

2πj

n
,

where j runs from 0 to n− 1. So the set{
n
√
R(cosϕ0 + i sinϕ0),

n
√
R(cosϕ1 + i sinϕ1), . . . ,

n
√
R(cosϕn−1 + i sinϕn−1)

}
is the set of all roots of degree n of w. Note that if we try to construct a continuous
square root function on C, then as we go from 1 + εi to 1 − εi counterclockwise
along unit circle, value of square root will change to the opposite, delivering a
discontinuity.

Another issue with taking roots is apparent when we, for example, look at Car-
dano’s formula (1). The expression in that formula has form 3

√
A + 3

√
B. At the

first glance, this gives 3 · 3 = 9 different numbers, while only 3 of them are actually
solutions of the original equation.

There is no easy way to fix these issues. Possible ways are:

(1) use multiple-valued functions,
(2) use so called Riemann surfaces instead of C as a domain,
(3) only define roots on pieces of C that do not “go around 0”.

In this course, we will be mainly restricted to the latter option, but we will probably
make a stab at some particular cases of (2) in the end of the course.
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1.4.1. Roots of 1. (Technically this was in Lecture 2.) Note that all degree n roots
of a number w = R(cosα+ i sinα can be written as

zj =
n
√
R(cos(αn + 2πj

n ) + i sin(αn + 2πj
n ) = z0ξj ,

where ξj = cos 2πj
n + i sin 2πj

n . Observe that ξj are degree n roots of 1. Moreover,

ξj = ξj , where ξ = ξ1 = cos 2π
n +i sin 2π

n is the nth degree root of 1 with the smallest

positive argument. So, all nth degree roots of w can be written as zj = z0ξ
j ,

j = 0, . . . , n− 1.
As an illustration of computations with roots of 1, consider all roots 1 = ξ0, ξ1,

ξ2, . . . , ξn−1 of degree n of 1. Let ξ be as above, then ξj = ξj . Find

1 + ξ1 + ξ2 + · · ·+ ξn−1 = S.

Note that ξS = ξ + ξ2 + ξ3 + · · ·+ ξn−1 + ξn = S. So

ξS = S,

hence ξ = 1 or S = 0. The former is impossible since ξ has nonzero argument, so
S = 0.

Lecture 2. Stereographic projection. The extended complex plane.
The mapping 1/z

January 25, 2017
Relevant Sections in Markushevich:

I.3.9 (partially), I.3.12 (partially), I.5.20-24.

2.1. Equation of a generalized circle.

2.1.1. Equation of a straight line. Note that a vertical straight line is defined by
the equation z+ z̄ = D, where D ∈ R. Given an arbitrary straight line, multiplying
variable z by some number z0, we get a vertical straight line in w-plane, where
w = z0z. Therefore, equation of an arbitrary straight line is zz0 + z̄z̄0 = D. After
renaming variables we get that the equation of a straight line has the form

(4) Ez + Ez −D = 0.,

where E ∈ C, D ∈ R.

2.1.2. Equation of a circle. Note that a circle on C is described by the equation

|z − z0| = R.

Rewrite it as

|z − z0|2 = R2,

or

(z − z0)(z − z0) = R2,

zz − z0z − z0z + z0z0 −R2 = 0.

Renaming variables, we get

zz − Ez − Ez +D = 0,

where E ∈ C and D ∈ R. To accommodate straight lines (4), change this equation
to

(5) Azz − Ez − Ez +D = 0,
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where E ∈ C and A,D ∈ R. The equation (5) describes, depending on parameters,
an arbitrary straight line or an arbitrary circle. Together, straight lines and circles
are called generalized circles. To explain this choice of terminology, think of a really
large circles: close up a piece of a large circle looks almost like a straight line. So,
one can think of a straight line as circle that “passes through infinity”. Later on
we will give precise meaning to these words.

2.2. Stereographic Projection. Let complex plane C be the xy-plane in R3.
Consider sphere Σ of radius 1 centered at origin. Denote its north pole by N and
its south pole by S. Then the central projection σ : Σ→ C centered at N provides
a bijection between Σ with N deleted and C. (See Fig. 1.) This mapping is called
the stereographic projection. The sphere Σ is usually called the Riemann sphere.

λ
ϕ

P

Q

O

N

S

1

1

π
4 + ϕ

2

x

y

ζ

Σ

Figure 1. Stereographic projection.

Let Q ∈ Σ, and let (ϕ, λ) be spherical (geographic) coordinates on Σ. That is,
ϕ is latitude, measured from equator, and λ is longitude, measured from principal
meridian (the one passing through x-axis). Let P be the point on the complex plane
that Q = (ϕ, λ) is projected to. Let z be the complex number that corresponds to
the point P . Then one can show that

z = tan
(π

4
+
ϕ

2

)
(cosλ+ i sinλ).
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(For example, by inspecting triangle ONP and the isosceles triangle ONQ.) Also,
one can see that (you might remember this from three dimensional calculus)

ξ = cosϕ cosλ, η = cosϕ sinλ, ζ = sinλ.

Either from inspecting triangle ONP , or from trigonometry one can see that

x = ξ
1−ζ ,

y = η
1−ζ .

Here, (ξ, η, ζ) are Cartesian coordinates of Q and z = x+ iy.
It follows (for example, by squaring the equalities above and solving for ζ, taking

into account ξ2 + η2 + ζ2 = 1) that

ξ = 2x
x2+y2+1 ,

η = 2y
x2+y2+1 ,

ζ = x2+y2−1
x2+y2+1 .

Theorem 1. Stereographic projection preserves generalized circles. That is, image
of a circle on the Riemann sphere is a circle or a straight line on the complex plane.

Proof. Let’s inspect image of a circle under stereographic projection. Note that
circle on Σ is a section of Σ with a plane, that is a collection of points (ξ, η, ζ) of Σ
that satisfy

Aξ +Bη + Cζ +D = 0.

Plugging in expressions for ξ, η, ζ through x, y, we get

A
2x

x2 + y2 + 1
+B

2y

x2 + y2 + 1
+ C

x2 + y2 − 1

x2 + y2 + 1
+D = 0,

or

2Ax+ 2Bx+ (D + C)(x2 + y2) + (D − C) = 0

If D = −C, the latter is an equation of a straight line. Note that D = −C when
plane defining circle on B has equation of the form Aξ + Bη + C(ζ − 1) = 0, that
is it passes through (0, 0, 1) = N .

If D 6= −C, then this is an equation of a circle. �

2.2.1. Reminder: angle between curves.

Definition 5. A curve in Rn is a continuous map γ : [a, b]→ Rn.

The image of γ is often called curve, too. When there is need to distinguish
between different curves with the same image, different functions γ are referred to
as parameterizations.

A curve (for simplicity, in R3) passing through a point P is said to have a tangent
at P , or to be regular at P , if there is a parametrization (ξ(t), η(t), ζ(t)) such that

(ξ′(t))2 + (η′(t))2 + (ζ ′(t))2 6= 0

at the value of parameter t corresponding to P . In this event, vector (ξ′(t), η′(t), ζ ′(t))
(again, with t that corresponds to P ) is called a tangent vector to γ at P .

Note that differentiability of (ξ(t), η(t), ζ(t)) at this value of t is not a sufficient
condition for having a tangent.

If γ1, γ2 are two curves that pass through P and both have tangents at P , then
by definition, angle between γ1 and γ2 is the angle between their tangents at P .
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2.2.2. Stereographic projection preserves angles. Let Q = (ξ, η, ζ) and let γ be a
curve on Σ that passes through Q and has a tangent at Q. Let (ξ(t), η(t), ζ(t)) be
an appropriate parametrization of γ. Then, as we mentioned earlier,

x = ξ(t)
1−ζ(t) ,

y = η(t)
1−ζ(t) ,

so

x′ = ξ′(1−ζ)+ζ′ξ
(1−ζ)2 ,

y′ = η′(1−ζ)+ζ′η
(1−ζ)2 ,

Using that ξ2 +η2 = 1−ζ2 (since (ξ, η, ζ) is a point on the sphere Σ), and therefore
ξξ′ + ηη′ + ζζ ′ = 0, by a direct calculation we get that

x′
2

+ y′
2

=
ξ′

2
+ η′

2
+ ζ ′

2

(1− ζ)2
.

Theorem 2. Under stereographic projection, the angle between any two curves on
the Riemann sphere Σ equals the angle between the images of the curves in the
complex plane, and conversely.

Proof. Let α be the angle between two curves (x1(t), y1(t)) and (x2(t), y2(t)) at
point P = (x, y) on a complex plane (it is of course assumed that the curves
are regular (have a tangent) at P ). Let β be the angle between their preimages
(ξ1(t), η1(t), ζ1(t)) and (ξ2(t), η2(t), ζ2(t)) at the preimage Q = (ξ, η, ζ) of P under
stereographic projection.

Then using expressions for x′i, y
′
i and x′i

2
+ y′i

2
that we got above, we obtain

cosα =
x′1x
′
2+y′1y

′
2√

x′1
2+y′1

2
√
x′2

2+y′2
2

=

=
(ξ′1(1−ζ)+ζ′1ξ)(ξ

′
2(1−ζ)+ζ′2ξ)+(η′1(1−ζ)+ζ′1η)(η′2(1−ζ)+ζ′2η)

(1−ζ)2
√
ξ′1

2+η′1
2+ζ′1

2
√
ξ′2

2+η′2
2+ζ′2

2
=

=
(ξ′1ξ

′
2+η′1η

′
2)(1−ζ)2+(ξξ′1+ηη′1)ζ′2(1−ζ)+(ξξ′2+ηη′2)ζ′1(1−ζ)+ζ′1ζ

′
2(ξ2+η2)

(1−ζ)2
√
ξ′1

2+η′1
2+ζ′1

2
√
ξ′2

2+η′2
2+ζ′2

2
=(

using ξ2 + η2 = 1− ζ2 and ξξ′i + ηη′i = −ζζ ′i
)

=
(ξ′1ξ

′
2+η′1η

′
2)(1−ζ)2+(−ζζ′1)ζ′2(1−ζ)+(−ζζ′2)ζ′1(1−ζ)+ζ′1ζ

′
2(1−ζ2)

(1−ζ)2
√
ξ′1

2+η′1
2+ζ′1

2
√
ξ′2

2+η′2
2+ζ′2

2
=

=
(ξ′1ξ

′
2+η′1η

′
2)(1−ζ)2+ζ′1ζ

′
2(−ζ(1−ζ)−ζ(1−ζ)+1−ζ2)

(1−ζ)2
√
ξ′1

2+η′1
2+ζ′1

2
√
ξ′2

2+η′2
2+ζ′2

2
=

=
(ξ′1ξ

′
2+η′1η

′
2)(1−ζ)2+ζ′1ζ

′
2(1−ζ)2)

(1−ζ)2
√
ξ′1

2+η′1
2+ζ′1

2
√
ξ′2

2+η′2
2+ζ′2

2
=

=
ξ′1ξ
′
2+η′1η

′
2+ζ′1ζ

′
2√

ξ′1
2+η′1

2+ζ′1
2
√
ξ′2

2+η′2
2+ζ′2

2
=

= cosβ.

�

Remark. In most textbooks, stereographic projection shoots the other way
than in these lectures, that is from the complex plane to Riemann sphere. Does
not make any substantial difference, but be aware.

Remark. Sometimes, instead of the sphere x2 + y2 + z2 = 1, the sphere
x2 +y2 + (z− 1

2 )2 = 1
4 is considered in the stereographic projection (and also called

the Riemann sphere).
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2.3. Limits of functions and sequences in C. Convergence of sequences in C
and limits of functions C→ C carry straightforwardly from R2.

For example, a sequence (zn) in C converges to w ∈ C if it is converges to w as
a sequence in R2. Equivalently, we say that lim

n→∞
zn = w if ∀ε > 0 ∃N ∈ N ∀n >

N, |zn − w| < ε.
Similarly, we say that a function f : C → C has a limit w at z0 if it has the

same limit as a function R2 → R2. Equivalently, we say that lim
z→z0

f(z) = w if

∀ε > 0 ∃δ > 0 ∀z, if 0 < |z − z0| < δ, then |f(z)− w| < ε.
Once limits of functions are defined, continuity of functions is defined in a usual

way.

2.4. Extended complex plane C. Note that as Q approaches the north pole N
on the Riemann sphere, the absolute value of image of Q approaches infinity. It is
convenient to add a point ∞ to the complex plane C, C = C ∪ {∞} and say that
stereographic projection sends N to∞ ∈ C. C is called the extended complex plane.

To be more precise, we add a new point, denoted by ∞, and explain what it has
to do with other points, or, more specifically, we explain how convergence works on
C. There is a number of ways to do that. Any of below suffices.

• Convergence on C is determined by convergence on Σ via the stereographic
projection. For example, for f : C → C converges to w ∈ C at z0 ∈ C
if g = σ−1 ◦ f ◦ σ : Σ → Σ converges to σ−1(w) at σ−1(z0) (recall that
σ : Σ→ C is the stereographic projection).

Similarly, (zn) in C converges to w if
(
σ−1(zn)

)
converges to σ−1(w)

on Σ.
• (Optional.) The same in different words: one then can think of stereo-

graphic projection as a homeomorphism between Σ and C, which induces
topology on C.
• (Optional.) One can say that the topology on C is organized by saying that

open neighborhoods of ∞ are the sets of the form {∞} ∪ C \K, where K
runs through all compact (closed and bounded) subsets of C. This is an
example of the procedure generally called one-point compactification.

Whichever you prefer, it gives a unified way to look at finite limits, infinite limits
and limits at infinity. For example, a sequence (zn) converges to ∞ if and only if
∀ε > 0 ∃N ∈ N ∀n > N, |zn| > ε. As another example, f(z) has limit w as z →∞
if ∀ε > 0 ∃δ > 0 ∀|z| > δ, |f(z)−w| < ε. All other combinations (infinite limit of a
function, infinite limit at infinity) are defined similarly.

Now the stereographic projection σ is a map Σ → C. It is a bijection (and,
moreover, continuous in both directions).

We also would like to define (at least some) arithmetic operations with ∞. One
way to do that is to consider the set of all convergent sequences in C and introduce
the following equivalence relation: (zn) ∼ (wn) if lim(zn) = lim(wn). Then the
equivalence classes are in one-to-one correspondence with complex numbers. We
add one more equivalence class: sequences that go to infinity, i.e. such sequences
(zn) that ∀ε > 0 ∃N ∈ N ∀n > N, |zn| > ε. This new equivalence class is denoted
by ∞ and called infinity.

This approach allows to easily define arithmetic operations on C: for z, w ∈ C
we do the needed arithmetic operation on the corresponding sequences (zn), (wn),
and if the result is the same regardless of choice of (zn), (wn), then the operation
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is well-defined. This allows to define z · ∞ = ∞ (if z 6= 0), z/0 = ∞ (z 6= 0),
z +∞ = ∞ (z 6= ∞), etc. Note that, for example, ∞ +∞ is not defined. Indeed,
∞+∞ can be represented as lim((n) + (n)) =∞ or as lim((n) + (−n) = 0.

2.5. The mapping 1
z . Now, consider the rotation ρ of the sphere Σ about x-axis

by the angle π. Under this rotation, a point with spherical coordinates (ϕ, λ) goes
to (−ϕ,−λ). If z corresponds to (φ, λ) under the stereographic projection, then for
the point w that corresponds to (−ϕ,−λ) we have (see formula in Sec. 2.2)

w = tan
(π

4
− ϕ

2

)
(cosλ− i sinλ) =

1

tan(π4 + ϕ
2 )(cosλ+ i sinλ)

=
1

z
.

Note that this equality includes that cases z = 0, w = ∞ and z = ∞, w = 0.
Therefore, denoting stereographic projection by σ, we have that the map

C σ−1

−→ Σ
ρ−→ Σ

σ−→ C

is precisely the complex inversion map: z → w = 1/z. Since rotation of a sphere
clearly preserves circles and angles, we immediately get the following statement.

Theorem 3. Map C → C that sends z → 1/z preserves generalized circles (i.e.
circles and straight lines) and angles between curves on the extended plane C.

Note that the part about generalized circles can be easily obtained by inspecting
equation (5) of a generalized circle and plugging in z = 1/w:

Azz̄ − Ēz − Ez̄ +D = 0,

A 1
w

1
w̄ − Ē 1

w − E 1
w̄ +D = 0,

Dww̄ − Ēw̄ − Ew +A = 0.

Inspecting the above equation we see the following:

• Circles (A 6= 0) that do not pass through 0 (D 6= 0) go to circles that do
not pass through 0.
• Circles (A 6= 0) that pass through 0 (D = 0) go to straight lines that do

not pass through 0.
• Conversely, straight lines (A = 0) that do not pass through 0 (D 6= 0) go

to circles that pass through 0.
• Straight lines (A = 0) that pass through 0 (D = 0) go to straight lines that

pass through 0.

Lecture 3. Möbius transformations. Complex derivative. Polynomials

February 1, 2017
Relevant Sections in Markushevich:

I.7.28–30, I.8.31–34, I.9.35.

Maps that preserve angles between curves are called conformal. So far we’ve
shown that the stereographic projection and 1

z are conformal maps.
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3.1. Möbius transformations. Besides 1/z, we consider two more conformal
maps of extended complex plane:

(1) z → 1/z,
(2) z → z + c, c ∈ C,
(3) z → az, 0 6= a ∈ C.

The second map is a translation, so it clearly preserves generalized circles and is
conformal. The map z → az is a composition of dilatation with coefficient |a| and
rotation about origin by the angle Arg a, and so it also preserves generalized circles
and is conformal. Finally, note that all three maps are bijections of C.

Definition 6. Maps of the form f(z) = az+b
cz+d , a, b, c, d ∈ C, ad− bc 6= 0, are called

Möbius transformations of the extended complex plane.

Theorem 4. Let a, b, c, d ∈ C, and ad− bc 6= 0. Then the Möbius transformation
f : C→ C defined by

f(z) =
az + b

cz + d

are bijections that preserve generalized circles (i.e. circles and straight lines) and
angles between curves on the extended plane C.

Proof. To prove this theorem, it is enough to note that

f(z) =
az + b

cz + d
=
a

c
+
b− ad/c
cz + d

,

so f is a composition of maps L1(z) = cz+ d, Λ(z) = 1/z, L2(z) = a
c + (b−ad/c)z:

f(z) = L2(Λ(L1(z))).

Maps Li and Λ are of the types listed above (more exactly, Li are easy compositions
of types 2 and 3), and so f preserves circles on C, preserves angles between curves
and is a bijection. �

Theorem 5. Let f, g be Möbius transformations. Then f ◦ g and f−1 are Möbius
transformations.

Proof. (In other words, Möbius transformations form a group.) Since f and g are
compositions of maps of the types (1)–(3) above, to prove this theorem, it is enough
to consider f(z) = 1/z, f(z) = z + c, f(z) = az, which is an easy check. �

Remark. For each Möbius transformation f , we can consider a matrix whose
entries are coefficients of f :

f(z) =
az + b

cz + d
↔ A =

(
a b
c d

)
.

(There is one detail: the matrix A above is only defined up to multiplication by
a constant.) One can check that taking a composition of Möbius transformations
corresponds to the usual multiplication of respective matrices. In other words, if f
has matrix A, and g has matrix B, one can check that the composition f ◦ g has
matrix AB. In particular, under this observation another proof of Theorem 5 is
clear, since detAB = detAdetB.

A “sciency” way to say this is that the group of Möbius transformations is
isomorphic to PSL2(C), the projective special linear group over C, i.e., the group of
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2 × 2 non-degenerate2 matrices over C, considered up to a complex multiplicative
constant.

Theorem 6. Let z1, z2, z3 ∈ C be distinct, and let w1, w2, w3 ∈ C be distinct. Then
there exists a Möbius transformation f such that f(z1) = w1, f(z2) = w2, f(z3) =
w3. Moreover, such f is unique.

Proof. Since inverse to a Möbius transformation is a Möbius transformation, it is
enough to find g such that g(z1) = 0, g(z2) = 1, g(z3) =∞. Note that the map

g(z) =
(z − z1)(z2 − z3)

(z − z3)(z2 − z1)

does exactly that. So let g be as above and h similarly send w1, w2, w3 to 0, 1,∞,
respectively. Then, by Theorem 5, f = h−1 ◦ g is the required Möbius transforma-
tion.

To show uniqueness, observe that if there two distinct Möbius transformations
f1, f2 that send zi to wi, then h◦f1, h◦f2 are two distinct Möbius transformations
that send z1, z2, z3 to 0, 1,∞, respectively. Inspecting the above displayed formula,
we see that such Möbius transformation is unique.

�

Remark. Based on the proof above, one can also write out explicit formula for
f such that f(zi) = wi, i = 1, 2, 3, but it is rather long.

3.2. Complex differentiable functions. Cauchy–Riemann Equations.

Definition 7. Let f be a complex function defined in a neighborhood of z0 ∈ C.
Then f is called complex differentiable at z0 if there exists limit

lim
z→z0

f(z)− f(z0)

z − z0
= L.

Definition 8. Let f be a complex function defined in a neighborhood of z0 ∈ C.
Then f is called complex differentiable at z0 if f can be expressed as

∆f = L∆z + ε∆z,

where ∆f = f(z) − f(z0), ∆z = z − z0, L ∈ C, and ε is a function s.t. ε → 0 as
∆z → 0.

In this event, L is called the value of derivative of f at z0 and denoted L = f ′(z0),

L = df
dz (z0).

As we know from calculus/real analysis/mathematical analysis, these two defini-
tion are equivalent (one can pass from Def. 8 to Def. 7 by simply dividing the latter

displayed formula by ∆z, and other way around by putting ε = f(z)−f(z0)
z−z0 − L).

Functions that are complex differentiable on the whole complex plane C are
called entire.

[The following terms were not introduced in this lecture, we will introduce them
later. Functions, complex differentiable on an open set D, are also called holomor-
phic, or analytic on D. We say that the function f is analytic at a point z0 if f is
analytic on a neighborhood of z0.]

Complex differentiation satisfies all normal properties of derivative:

2Generally, there is a difference between PSL and PGL, but not over C.



16 ANDREY NIKOLAEV

(1) differentiation is a linear operator, that is if f, g are complex differentiable
at z0 ∈ C and α, β ∈ C, then αf + βg is complex differentiable at z0 and
(αf + βg)′ = αf ′ + βg′ at z0.

(2) product rule takes place, that is if f, g are complex differentiable at z0 ∈ C,
then so is fg and (fg)′ = f ′g + fg′ at z0.

(3) chain rule takes place, that is if g is differentiable at z0 ∈ C, and f is
differentiable at f(z0), then f ◦g is differentiable at z0 and (f ◦g)′ = f ′◦g ·g′
at z0.

(4) derivative of inverse function rule takes place, that is if one-to-one f is dif-
ferentiable at z0 and f ′(z0) 6= 0, then the inverse function g is differentiable
at w0 = f(z0) and g′(w0) = 1/f ′(z0).

Any function C → C can be viewed as a function R2 → R2 by considering
f(x + iy) = u(x, y) + iv(x, y). The following theorem describes the difference
between complex differentiability and real differentiability as a function R2 → R2.

Theorem 7. (Cauchy–Riemann equations) Let f(z) = u(x, y) + iv(x, y) be a com-
plex function of z = x + iy defined in a neighborhood of z0. Then f is complex
differentiable at z0 if and only if u(x, y), v(x, y) are differentiable functions of (x, y)
and

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
at z0.

Proof. Prove “complex differentiable ⇒ Cauchy-Riemann equations”. Let

∆f = L∆z + ε∆z,

where L = a+ bi, ∆z = ∆x+ i∆y. Then

∆f = (a+ bi)(∆x+ i∆y) + ε∆z,

so

∆u+ i∆v = (a∆x− b∆y) + i(a∆y + b∆x) + ε∆z,

Comparing Re and Im on right and left sides, we get

∆u = a∆x− b∆y + ε1|(∆x,∆y)|,
∆v = a∆y + b∆x+ ε2|(∆x,∆y)|,

which exactly means that u, v are differentiable and

∂u

∂x
= a =

∂v

∂y
,

∂u

∂y
= −b = −∂v

∂x
.

To prove the other direction of the theorem, one only has to perform this argument
in reverse direction. �

Following the notation above, we have f ′(z0) = a + bi, so using expressions for
a, b above we get

df

dz
=
∂u

∂x
+ i

∂v

∂x
=
∂u

∂x
− i∂u

∂y
=
∂v

∂y
+ i

∂v

∂x
=
∂v

∂y
− i∂u

∂y
.

Examples

(1) f(z) = 1 is complex differentiable and f ′(z) = 0.
(2) f(z) = z is complex differentiable and f ′(z) = 1.
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(3) f(z) = ex(cos y + i sin y) is complex differentiable and f ′(z) = f(z). The
function f is called the exponential function and denoted f(z) = ez =
exp(z). We will learn more about this function later.

(4) f(z) = x is not complex differentiable anywhere (Cauchy–Riemann equa-
tions fail at every point).

(5) f(z) = |z|2 = zz̄ is only complex differentiable at z = 0 (Cauchy–Riemann
equations fail at z 6= 0).

To elaborate on the latter two examples, note that if a complex function f is
differentiable as a function R2 → R2, then substituting ∆x = (∆z + ∆z̄)/2, ∆y =
(∆z −∆z̄)/2i, we can get that

∆f = A∆z +B∆z̄ + ε∆z.

The coefficients A,B can be viewed as formal partial derivatives by z, z̄, respec-
tively. One can see that f being complex differentiable is equivalent to B = ∂f

∂z̄ = 0.

Note that in the latter two examples we have ∂x
∂z̄ = ∂(z+z̄)

2∂z̄ = 1/2 6= 0, and ∂zz̄
∂z̄ = z,

which is 0 precisely if z = 0.

3.3. Geometric interpretation of the complex derivative.

3.3.1. Geometric interpretation of Arg f ′. Suppose λ(t) is a curve [−ε, ε]→ C such
that λ′(0) 6= 0, λ(0) = z0. Consider function f : U → C, where U ⊆ C is a
neighborhood of z0, such that f ′(z0) 6= 0.

Find tangent to the curve Λ(t) = f(λ(t)) at f(z0):

Λ′(0) = f ′(λ(0)) · λ′(0) = f ′(z0) · λ′(0).

Since the above is by assumption nonzero, we can consider the argument,

Arg Λ′(0) = Arg (f ′(λ(0)) · λ′(0)) = Arg f ′(z0) + Arg λ′(0).

In other words, tangent to the curve f(λ) at f(z0) is rotated by Arg f ′(z0) compared
to tangent to the curve λ at z0. As a consequence, f preserves angles between curves
passing through z0.

Therefore, if f ′ 6= 0 for all points in U , then f is a conformal map U → C.
In particular, we can now easily establish conformity of Möbius transformations.

Suppose

f(z) =
az + b

cz + d
,

where ad− bc 6= 0. Find f ′:

f ′(z) =
a(cz + d)− c(az + b)

(cz + d)2
=

ad− bc
(cz + d)2

6= 0,

so any Möbius map is conformal at every point of C \ {−d/c}. The only question
is to figure out whether f is conformal as a map of extended complex plane. That
is, we need to check conformity at z = −d/c and z =∞.

To check the former, it suffices to check conformity of map 1/f at z = −d/c
(since transformation 1/z preserves angles on C):

1/f =
cz + d

az + b
,

which is finite at z = −d/c since a(−d/c) + b 6= 0.
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To check the latter, similarly, it suffices to check conformity of map f(1/z) at
z = 0:

f(1/z) =
a/z + b

c/z + d
=
bz + a

dz + c
,

which is conformal at 0 (in the event c = 0 we refer to the previous case).

3.3.2. Geometric interpretation of |f ′|. Suppose

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0

exists and f ′(z0) 6= 0.
Then taking absolute value on both sides, we get

|f ′(z0)| = lim
z→z0

|f(z)− f(z0)|
|z − z0|

,

which can be interpreted the following way:

• |f(z)− f(z0)| is distance between images f(z), f(z0),
• |z − z0| is distance between z, z0,

• |f(z)−f(z0)|
|z−z0| is ratio of these distances.

So |f ′(z0)| is the coefficient by which f stretches distances at z0.
Putting results of these two sections together, we get the following statement:

if f ′(z0) 6= 0, then, in linear approximation, f at point z = z0 is a composition of
rotation by the angle Arg f ′(z0) and dilatation by |f ′(z0)|.

Note that if f ′(z0) = 0, then the linear approximation of f does not give a clear
picture of behavior of f around z0.

3.4. Elementary functions: polynomials. Let P (z) be a polynomial of degree
n > 0:

P (z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0,

where a0, . . . , an ∈ C and an 6= 0. By fundamental theorem of algebra, P has a
complex root z1:

P (z1) = 0.

(There is a number of proofs of this statement. We will give one in the second half
of this course.) Then P can be represented as

P (z) = (z − z1)Q1(z),

where degQ1 = n− 1. If, again, z1 is a root of Q1, repeat procedure until we get

P (z) = (z − z1)k1Q(z),

where degQ = n−k1 and Q(z1) 6= 0. In such event, z1 is called a root of multiplicity
k1 of P .

Terminology. Instead of “root of multiplicity k” one can also say “zero of
order k”. We will normally use the latter later in the course when we talk about
arbitrary functions.

If degQ > 0, repeat the whole argument until we express P as

P (z) = an(z − z1)k1(z − z2)k2 · · · (z − zm)km ,

where k1 + k2 + · · ·+ km = n, so there are at most n distinct roots.
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Further, notice the following. If z0 is a multiple root (root of multiplicity k ≥ 2),
then P ′(z0) = 0:

P ′(z) = ((z − z0)kQ(z))′ = k(z − z0)k−1Q(z) + (z − z0)kQ′(z),

so P ′(z0) = 0 + 0 = 0. We can say even more:

P ′(z) = k(z − z0)k−1Q(z) + (z − z0)kQ′(z) =

= (z − z0)k−1(kQ(z) + (z − z0)Q′(z)) =

= (z − z0)k−1S(z),

where S(z0) = kQ(z0) + 0 6= 0, so z0 is root of multiplicity exactly k − 1 of Q′.
Now we consider properties of P as a mapping C → C. To start with, we find

out whether a point w ∈ C has preimages under P , and if yes, how many. Fix some
point w0 ∈ C. Then, to find its preimages under P , we need to find solutions of
the equation

P (z) = w0,

that is, we need to find roots of the polynomial P (z)−w0. As we observed above,
there are at most n distinct roots. If there fewer than n distinct roots, it means that
some root z0 has multiplicity more than 1, i.e., z0 is a root of (P ′(z)−w0)′ = P ′(z).
Observe that P ′(z) does not depend on w0 and has at most n− 1 roots.

Finally, recall that P is conformal at a point z whenever P ′(z) 6= 0, so P can be
not conformal only at the points which are roots of P ′.

Putting the above observations to together, we get the following statement.

Lemma 1. Degree n > 0 polynomial P as a map C→ C is conformal everywhere
on C, perhaps with exception to at most n− 1 points z1, z2, . . . , zm which are roots
of P ′. Moreover, for each z 6= zi (that is, for each point of conformity), preimage
of P (z) contains exactly n distinct elements. Preimage of each wi = P (zi) contains
fewer than n elements.

In the next lecture, we investigate in more detail what is going on at points of
non-conformity.

Lecture 4. Elementary functions: polynomials and the exponential.
Basics of topology of C

February 8, 2017
Relevant Sections in Markushevich:

I.9.35–41, partially I.3.13.

4.1. Behavior of polynomials at points of non-conformity. We continue
looking into polynomials as mappings C→ C.

Theorem 8. Let z0 be a root of multiplicity k ≥ 2 of equation P (z) = P (z0).
Then, under the mapping w = P (z), every angle between curves at z0 is enlarged k
times.

Before proving this theorem, note the following.
Remark. Let λ : [−ε, ε]→ C be a curve such that λ(0) = z0. Then

(P (λ(t))′ = P ′(λ(t)) · λ′(t).
Since we established before that P ′(z0) = 0, we have at t = 0:

P ′(λ(0)) · λ′(0) = P ′(z0) · λ(0) = 0
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regardless of parametrization of λ. So in order to find tangent to P (λ) at z0, we
would have to reparametrize P (λ) itself, which is doable but annoying. Instead, we
change definition of a tangent (notice that if λ′(0) 6= 0, then the below definition is
consistent with the old one).

Definition 9. Let λ : [−ε, ε] → C be a curve such that λ(0) = z0. If there exists
limit

θ = lim
t→0

Arg
λ(t)− λ(0)

t
,

then θ is called the angle of tangent to λ at z0.

Proof of Theorem 8. First note that under the condition of the theorem,

P (z)− P (z0) = (z − z0)kQ(z).

Suppose λ : [−ε, ε]→ C be a curve such that λ(0) = z0 with tangent at z0 at angle
θ. Then taking Λ(t) = P (λ(t)), we get

lim
t→0

Arg
Λ(t)− Λ(0)

t
=

= lim
t→0

Arg
P (λ(t))− P (λ(0))

t
=

= lim
t→0

Arg
(λ(t)− z0)kQ(λ(t))

t
=

= lim
t→0

(
Arg

(λ(t)− λ(0))k

t
+ ArgQ(λ(t))

)
=

= lim
t→0

(
kArg

λ(t)− λ(0)

t
+ ArgQ(λ(t))

)
=

= kθ + ArgQ(z0).

Therefore, angle θ2 − θ1 between curves λ1, λ2 at z0 gets transformed to

(kθ2 + ArgQ(z0))− (kθ1 + ArgQ(z0)) = k(θ2 − θ1).

�

Now we consider a degree n > 1 polynomial P as a map C→ C. First of all,

lim
z→∞

P (z) = lim
z→∞

anz
n(1 + an−1

z + . . .+ a0
zn ) = lim

z→∞
anz

n · 1 =∞,

so P (∞) = ∞. Moreover, the angles at infinity get enlarged n times. To establish
that, one only needs to consider the mapping

f(ζ) =
1

P (1/ζ)
=

ζn

a0ζn + a1ζn−1 + · · ·+ an−1ζ + an

and apply the argument above to f = ζn · 1
a0ζn+···+an . For consistency with the

statement of Theorem 8, one may also think of ∞ as root of multiplicity n of the
equation P (z) =∞.

Lemma 1, Theorem 8, and the above observation together give the following
statement that describes behavior of a polynomial P is a mapping C→ C.
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Theorem 9. A degree 1 polynomial is conformal everywhere as a map C→ C.
A degree n > 1 polynomial P as a map C→ C is conformal everywhere on C with
exception to ∞ and at most n− 1 finite points z1, z2, . . . , zm which are roots of P ′.
For each point zj, angles between curves at zj are enlarged kj times, where kj is
the multiplicity of the root zj of equation P (z) = P (zj). Angles at ∞ are enlarged
n times.
Moreover, for each z 6= zi, preimage of P (z) contains exactly n distinct elements.
Preimage of each P (zi) contains less than n elements.

As an example, consider P (z) = z2(z − 1)2 + 5. We get that P is conformal
except at ∞ and the roots of P ′(z) = 2z(z − 1)2 + 2z2(z − 1) = 2z(z − 1)(2z − 1),
i.e., the points z1 = 0, z2 = 1, z3 = 1/2. Since their multiplicity in P ′ is 1, their
multiplicity in P (z)− P (zj) is 2. Therefore, angles at zj are enlarged 2 times.

4.1.1. Mapping (z − a)n. Consider the particular case P (z) = (z − a)n. Then, by
results of this section, P is conformal everywhere on C except at the point z = a.
Moreover, angle θ at a gets sent to an angle nθ at 0.

4.2. Elementary functions: the exponential. Note that the “regular” real-
valued exponential function ex is the unique continuous function f(x) that satisfies
the equation f(x1 +x2) = f(x1)f(x2), f(1) = e. Similar statement holds in case of
complex valued functions.

Theorem 10. (Existence and uniqueness of the exponential) There exists a unique
single-valued complex function f such that the following conditions take place.

(1) f(z) ∈ R whenever z ∈ R, and f(1) = e.
(2) For any z1, z2 ∈ C, f satisfies f(z1 + z2) = f(z1)f(z2).
(3) f is complex differentiable for all z ∈ C.

Such f(z) is denoted by ez or exp(z) and called the exponential function.

Proof. (Note that there is an alternative proof that uses real-number ODE’s, out-
lined in Homework Assignment 4.)

Suppose f is such a function.
Note that 0 6= e = f(1) = f(z + (1 − z)) = f(z)f(1 − z), so f(z) is never = 0.

Therefore, Arg f and ln |f | are well-defined everywhere on C. Taking Arg and ln | · |
of condition (2), we get

Arg f(z1 + z2) = Arg f(z1) + Arg f(z2),

ln |f(z1 + z2)| = ln |f(z1)|+ ln |f(z2)|.
So Arg f and ln |f | both satisfy functional equation

F (z1 + z2) = F (z1) + F (z2),

with the following difference: ln |f | is a single-valued function, Arg f is a multiple
valued function, defined up to 2πj, j ∈ Z. Further, split z = x + iy and use the
equation above:

F (x+ iy) = F (x) + F (iy).

Therefore, the functional equation above is satisfied by the following real functions
of real argument:

Arg f(x),Arg f(iy),

ln |f(x)|, ln |f(iy)|.
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Arg is still multiple valued, though.
Solve F (x1 + x2) = F (x1) +F (x2) for a single valued real F . One can easily see

that in this case F is linear. Indeed, assume F (1) = a. Then

nF (1/n) = F (1/n)+F (1/n)+ · · ·+F (1/n) = F (1/n+1/n+ · · ·+1/n) = F (1) = a,

so F (1/n) = a/n for any positive integer n. Also,

F (m/n) = F (1/n+ · · ·+ 1/n) = mF (1/n) = am/n

for any positive integers m,n. Further, F (0)+F (0) = F (0+0) = F (0), so F (0) = 0,
so F (−x) + F (x) = F (0) = 0, therefore F (x) = ax for any rational x. Since F is
continuous, it immediately follows that F (x) = ax for any x ∈ R.

In case of multiple valued function F defined up to 2πj, one can establish that
F (x) = αx + 2πj, where j ∈ Z. (Key point is to observe that with “small” values
of x1, x2, the equality F (x1 + xx) = F (x1) + F (x2) holds as is, rather than up to
2πk. Exercise: work out the details.)

Therefore, we have

Arg f(x) = αx+ 2πj, Arg f(iy) = βy + 2πl,

ln |f(x)| = ax, ln |f(iy)| = by,

so

Arg f(z) = αx+ βy + 2πk, ln |f(x)| = ax+ by.

Use condition (1): since f(x) is real, we immediately conclude that α = 0, and
since f(1) = e, we immediately conclude a = 1. Then

f = |f |(cos Arg f + i sin Arg f) =

f = ex+by(cosβy + i sinβy).

Now make sure that condition (3) is satisfied, that is check Cauchy–Riemann equa-
tions:

∂u

∂x
= ex+by cosβy

∂v

∂y
= bex+by sinβy + βex+by cosβy

Since ∂u
∂x = ∂v

∂y at all points z, we conclude that b = 0, β = 1. A quick check shows

that in such case the other Cauchy–Riemann equation ∂u
∂y = − ∂v

∂x is also satisfied.

Therefore, the function f satisfies (1)–(3) if and only if

f(z) = f(x+ iy) = ex(cos y + i sin y).

�

Note that the condition (3), redundant in the real case, is essential for uniqueness
here: there are multitude (given by any values of b and β other than 0 and 1 re-
spectively) of complex non-differentiable functions that are nevertheless continuous,
real differentiable and satisfy conditions (1), (2) of the theorem.
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4.3. Some properties of the exponential. Recall that ez = ex(cos y + i sin y),
where z = x+ iy. In particular, ez is never 0.

Now find derivative of ez. To do that, recall that from the proof of Cauchy–
Riemann equations (Theorem 7), we have that if f ′(z) = a+ bi, then

a =
∂u

∂x
=
∂v

∂y
, −b =

∂u

∂y
= −∂v

∂x
,

where u = Re f , v = Im f . So, for example,

df

dz
=
∂u

∂x
+ i

∂v

∂x
.

So for f = ez we have

f ′(z) = ex cos y + iex sin y = ez.

In particular, for each z ∈ C, f ′(z) 6= 0. Therefore, z → ez is a conformal mapping
C→ C.

What about C → C? Turns out, exp cannot be extended continuously to C.
Indeed, note that lim

x→+∞
ex = ∞, while lim

x→−∞
ex = 0, so the limit lim

z→∞
ez = ∞

does not exist. This also explains that exp is not a polynomial: if it was, it would
be ∞ at ∞.

Stare a bit harder at how this map works. To start with, we take a look at the
image of horizontal and vertical lines. Parametric equation of a horizontal line is
t+ ib, t ∈ R.

t+ ib→ et+ib = et(cos b+ i sin b),

which is a ray originating at 0 at the angle b to real axis.
Parametric equation of a vertical line is a+ it, t ∈ R.

a+ it→ ea+it = ea(cos t+ i sin t),

which is a circle of radius ea. So, the grid of horizontal and vertical lines is sent to
the “grid” of rays originating at 0 and circles centered at 0. Note that this presents
a very apparent illustration to conformity of z → ez, since two orthogonal systems
of lines are sent to two orthogonal systems of curves.

Now, we look at the image of a horizontal strip 0 ≤ Im z ≤ h. As we know from
the consideration above, the line Im z = 0 is sent to a ray originating at 0 at the
angle 0 to real axis, and the line Im z = h is sent to a ray originating at 0 at the
angle h to real axis. Then the interior of the strip gets sent to interior of the angle
formed by these two rays. Note in particular that if h ≥ 2π, then the image is
C \ {0}.

Finally, find periods of the exponential. Note that for any z ∈ C, we have
ez+2πi = ez, so any number 2πki, k ∈ Z, is a period of the exponent. Make sure
that there are no other periods. Suppose w is a period of exponent. Then ez+w = ez

for any z ∈ C. Since ez 6= 0, divide both sides by ez and get ew = 1. It is easy to
see that solutions of this equation are exactly the numbers w = 2πki, k ∈ Z.

4.3.1. Similarity between exp and (z−a)n as n→∞. This section is optional,
as it was not included in the lecture.

If we are looking at the image of a horizontal strip under exp, its left end gets
“squished” to 0, while its right end gets “stretched” to ∞. This bears similarity
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with map z → (z − a)n. Examine this similarity in more detail. Recall first that,
as we know from calculus, for any x ∈ R,

lim
n→∞

(1 + x/n)n = ex.

One can prove (see Homework Assignment 4) that the same holds for complex
numbers: for any z ∈ C,

lim
n→∞

(1 + z/n)n = ez,

so the map z → (1 + z/n)n can be thought of as approximations of z → ez. Now
write

(1 + z/n)n = n−n(z − (−n))n.

Consider the image under z → (z − (−n))n of an angle formed by real axis and
a ray originating at −n at the angle h/n to real axis. (We ignore coefficient n−n

because is a positive real number, and therefore does not change arg.) This angle
gets sent to the angle n · h/n = h at 0, just like the strip of height h under the
exponential map. Moreover, the ray at the angle h/n at −n intersects imaginary
axis at the point in tanh/n. As n → ∞, in tanh/n → nh/n = h, so this angle
looks more and more like a strip of height h.

4.4. Functions related to the exponential. Note that if we put z = iy, y ∈ R,
in the formula for ez, we see that

cos y =
eiy + e−iy

2
, sin y =

eiy − e−iy
2i

.

For an arbitrary z ∈ C, define the trigonometric functions sine and cosine to be

cos z =
eiz + e−iz

2
, sin z =

eiz − e−iz
2i

.

These definitions extend real sine and cosine functions, and bear many of the
same properties:

cos(−z) = cos z, sin(−z) = − sin z,

as easily seen from definition. Moreover,

cos2 z + sin2 z = 1,

(again, immediately from definition). Note, however, that cos and sin are no longer
bounded.

One can also check (similarly to how it’s done in the case of the exponential)
that sin and cos are periodic with periods w = 2πk, k ∈ C.

Further, considering z = z1 + z2, we get that

cos(z1 + z2) + i sin(z1 + z2) = exp(i(z1 + z2)) = exp(iz1) exp(iz2) =
= (cos z1 + i sin z1)(cos z2 + i sin z2) =
= (cos z1 cos z2 − sin z1 sin z2) + i(cos z1 sin z2 + sin z1 cos z2),

and

cos(z1 + z2) − i sin(z1 + z2) = exp(−i(z1 + z2)) = exp(−iz1) exp(−iz2) =
= (cos z1 − i sin z1)(cos z2 − i sin z2) =
= (cos z1 cos z2 − sin z1 sin z2)− i(cos z1 sin z2 + sin z1 cos z2),

adding and subtracting one equation from another, we establish formulas

(6) cos(z1 + z2) = cos z1 cos z2 − sin z1 sin z2,
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(7) sin(z1 + z2) = cos z1 sin z2 + sin z1 cos z2.

Observe that one property of cosine and sine that is not carried from the case of
real numbers is boundedness. While | cosx|, | sinx| ≤ 1 for x ∈ R, it is easy to see
that | cos z| and | sin z| are unbounded if z ∈ C.

Closely related to exp, sin, cos, are the hyperbolic functions cosh z and sinh z,
called the hyperbolic cosine and hyperbolic sine, respectively. The are defined by
formulas

cosh z =
ez + e−z

2
, sinh z =

ez − e−z
2

.

So,

cosh z = cos(iz), sinh z = −i sin(iz).

In particular, for example, cosh2 z − sinh2 z = 1. Any further information about
cosh and sinh can be derived from expression through the exponential or cosine and
sine.

Finally, we mention that once cos z, sin z, cosh z, and sinh z are defined, we can
define tan z, cot z, tanh z, coth z in the usual way. Their properties can also be
deduced either from their definitions through (hyperbolic) sine and cosine, or from
their expressions through the exponential function.

4.5. Notion of elementary functions. Complex functions built from a finite
number of exponentials, polynomials, and inverses to exp (called logarithm) and
zn (called nth roots) through composition and combinations using the four arith-
metic operations, are collectively called elementary functions. We will discuss the
logarithm and the nth root in detail later in the course.

Note that this class, in particular, includes all trig functions. (Exercise for
later in the course, when we introduce ln properly: express arcsin through ln).

Finally, recall that functions C→ C that are complex differentiable everywhere
on C are called entire. So far we have two main classes of examples: polynomials
and the exponential (and some of the related functions, like cos, but not, say, tan).

4.6. Basic notions of topology of C. In this section we start covering a bare
minimum of topological terms needed to proceed to theory of complex integral.
Note that the definitions below are given in relation to C. General definitions are
different is some cases. If you have difficulties with these, you can find them in
any Topology (and most Analysis) textbook (for example Topology by Munkress or
Elementary Topology. Problem Texbook by Viro et all).

An open disc Br(z0) of radius r > 0 centered at z0 is the set

{z ∈ C | |z − z0| < r}.
We will often refer to an open disc Br(z0) as a neighborhood of z0, or an r-
neighborhood of z0.

A closed disc of radius r ≥ 0 centered at z0 is the set

{z ∈ C | |z − z0| ≤ r}.
A subset U ⊆ C is called open if for any point z0 ∈ U , there is a neighborhood

of z0 contained in U : ∀z0 ∈ U ∃Br(z0) ⊆ U .
Examples: open disc is an open set, C is open set, ∅ is an open set, a single

point {z0} is not an open set, a straight line is not an open set, an open interval
(0, 1) ⊆ C is not an open set.
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For a set E ⊆ C, the boundary of E is the set ∂E that consists of points z0 ∈
C such that any neighborhood of z0 contains both points from E and from its
complement C \ E.

Examples: boundary of an open disc is the corresponding circle, boundary of a
closed disc is the corresponding circle, boundary of C is empty, boundary of Q ⊆ C
is R.

A subset C ⊆ C is called closed if ∂C ⊆ C. Alternatively, set C is closed if
and only if its complement C \ C is open. Vice versa, set C is open if and only if
its complement C \ C is closed. Proving these two statements is a nice exercise in
applying definitions.

For a subset E ⊆ C, its closure is the set E = E ∪ ∂E. Exercise: closure of a set
is closed set.

A fundamental property of open and closed sets is the following:

• Any union of open sets is open.
• Any finite intersection of open sets is open.
• Any finite union of closed sets is closed.
• Any intersection of closed sets is closed.

In the next lecture, we will continue with topological notions, such as connect-
edness, simple connectedness, interior, exterior, Jordan curve theorem.

Lecture 5. More topology. Definition of complex integral

February 15, 2017
Relevant Sections in Markushevich:

I.4.15–18, I.12.60–62.

5.1. More topology. We continue with introducing notions and terminology that
will be later used when dealing with complex integral.

A subset E ⊆ C is called connected if the following holds: given any decompo-
sition of E into two nonempty disjoint sets E1, E2, at least one of the sets E1, E2

contains a point of closure of the other. In other words, if

(8) E1, E2 6= ∅, E1 ∩ E2 = ∅, E1 ∪ E2 = E,

then E1 ∩ E2 6= ∅ or E1 ∩ E2 6= ∅.
[If you are interested in a bit more topological detail, there is a notion of a set

open in a set X. Let X be a fixed subset of C. Then a subset U ⊆ X is called
open in X if U = X ∩ O, where O is an open subset of C. Examples: X is always
open in itself, [0, 1/2) ⊆ C is open in [0, 1]. One can show that a function X → Y
(where X,Y ⊆ C) is continuous if and only if preimage of every set open in Y is
is open in X. Checking that this condition is equivalent to the ε–δ definition is a
nice exercise.

In these terms, E is connected if under the same conditions (8), E1 and E2

cannot be both open in E.]
A subset E ⊆ C is called path (pathwise, arcwise, linearly) connected if for any

two points z1, z2 ∈ E, there is a curve that joins them, i.e. a curve γ : [a, b] → E
such that γ(a) = z1, γ(b) = z2.

Example: a subset E = {(x, sin(1/x)) | x ∈ (0, 1)} ∪ {(0, t) | −1 ≤ t ≤ 1} is
connected but not path connected.

Theorem 11. If a subset E ⊆ C is path connected, it is connected.
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Proof. (Sketch.) If E = E1 ∪ E2 is a “disconnecting” decomposition, pick a point
z1 ∈ E and z2 ∈ E2. Let γ : [a, b] → E be a curve that connects z1 to z2. Under
γ−1, the decomposition E = E1 ∪ E2 induces a “disconnecting” decomposition of
[a, b]. �

Theorem 12. If an open subset E ⊆ C is connected, it is path connected.

Proof. (Sketch.) Fix a point z0 ∈ E. Note that both sets

E1 = {z ∈ E | z can be reached by a curve from z0}
and

E2 = {z ∈ E | z cannot be reached by a curve from z0}
are open. If E is not path connected, then E1, E2 6= ∅, which delivers a decompo-
sition (8) with E1, E2 open. �

Proofs of these two theorems are, strictly speaking, outside this course. However,
they are quite instructive exercises in application of notions introduced in this
section, so you are encouraged to work your way through these theorems.

Every set E ⊆ C can be represented as a union of disjoint connected sets.
Those connected sets are called the connected components of E. For example,
the set E = {z : |z| < 1 or |z − 3| < 1} has two connected components, the disks
E1 = {z : |z| < 1} and E2 = {z : |z − 3| < 1}.

Definition 10. A connected open subset of C is called a domain.

Note that the above is not a common definition, but this type of sets is used in
the course so often, that we give it a separate name.

Definition 11. Let E ⊆ C. Then the set of interior points of E (or just the interior
of E) is the set

Int(E) = {z ∈ E | ∃Br(z) ⊆ E}.
The set of exterior points of E (or just the exterior of E) is the set

Ext(E) = {z ∈ C | ∃Br(z) ∩ E = ∅}.

Examples:

(1) For E = Br(z0), Int(E) = Br(z0), Ext(E) = {z ∈ C | |z − z0| > r}.
(2) For E = Q ⊆ C, Int(E) = ∅, Ext(E) = {z ∈ C | Imz 6= 0}.

Note that for any set E ⊆ C, C = Int(E) ∪Ext(E) ∪ ∂E. (The boundary ∂E of
a set E was defined in the previous lecture.)

Also note that for any E ⊆ C, both Ext(E) and Int(E) are open (immediate
consequence of definition of open set). In particular, if E is open, then ∂E =
C \ (Ext(E) ∪ Int(E)) is closed. (This, of course, can be also seen directly.)

Definition 12. A subset E ⊆ C is called bounded if ∃Br(z0) such that E ⊆ Br(z0).
Equivalently, ∃M ∈ C s.t. ∀z ∈ E |z| < M .

Definition 13. A bounded domain G is called simply connected if ∂G is a con-
nected set. A bounded domain G is called n-connected (or multiply connected) if
∂G has n connected components.
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Beware: the definition above is one of the few here that do not translate “as
is” to the case of arbitrary topological spaces. In fact, it does not even translate
immediately to the case of unbounded domains.

Below we state two theorems which we will use later on but which are, unfortu-
nately, too annoying to prove within this course (especially the first one).

A curve γ : [a, b]→ C is called simple if it does not self-intersect except maybe at
the endpoints: if γ(x) = γ(y) then x = y or {x, y} = {a, b}. A curve γ : [a, b]→ C
is called closed if γ(a) = γ(b). A closed curve can be thought as a mapping from
a circle (rather than an interval) to C. A simple closed curve is called a Jordan
curve. In these notes, we will mostly keep calling such curves “simple closed”.

Theorem 13. (Jordan curve theorem) Complement C \ γ of a closed simple curve
γ has exactly two connected components, with γ as their common boundary. One of
these components, called the interior of γ and denoted I(γ), is bounded. The other
component, called the exterior of γ and denoted E(γ), is unbounded.

Theorem 14. A bounded domain G is simply connected if and only if whenever G
contains a simple closed curve γ, domain G also contains I(γ).

If we were to define simple connectedness in case of unbounded domains, the
above theorem would still be true for those. This theorem is what we will be using
practically when we later look into behavior of integral along closed curves.

5.2. Definition of complex integral. Let [a, b] be a closed interval on a real line.
Let tk, k = 0, . . . , n be as follows:

a = t0 < t1 < t2 < . . . < tn−1 < tn = b.

In such event, the collection P = {t0, t1, . . . , tn} is called a partition of [a, b].
The real number

|P| = max{t1 − t0, t2 − t1, . . . , tn − tn−1}
is called the norm (or diameter) of the partition P.

Let γ : [a, b] → C be a continuous curve, and let P be a partition as above.
Denote γ(tk) = zk, i = 0, . . . , n. If

sup
P

n∑
k=1

|zk − zk−1| = l <∞,

then the curve γ is called rectifiable and l is called the length of γ.
A curve γ : [a, b]→ C is called smooth if there exists a parametrization of γ such

that γ′(t) is continuous and nowhere zero. A curve γ : [a, b]→ C is called piecewise
smooth if there is a partition of [a, b] such that γ is smooth on every interval of the
partition.

Here is a fact from calculus: if γ = µ+ iν is a smooth curve, then

l =

∫ b

a

√
(µ′)2 + (ν′)2dt =

∫ b

a

|γ′(t)|dt.

Let be P = {t0, t1, . . . , tn} be a partition of [a, b]. Let collection {τk}, k =
1, . . . , n be such that tk−1 ≤ τk ≤ tk for every k = 1, . . . , n. Then τk’s are called
tags and pair

Ṗ = ({t0, t1, . . . , tn}, {τ1, . . . , τn})
is called a tagged partition of [a, b]. We define |Ṗ| = |P|.
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Let γ : [a, b] → C be a rectifiable curve, let Ṗ be a tagged partition of [a, b].
Denote γ(tk) = zn and γ(τk) = ζk. Let f be a complex function defined at every
point of γ. Then the Riemann sum of f along γ with respect to partition P is the
following sum:

S(f, Ṗ) =

n∑
k=1

f(ζk)(zk − zk−1).

If the limit3

I = lim
|Ṗ|→0

S(f, Ṗ)

exists, function f is called integrable along γ and the number I is called integral of
f along γ (or the value of integral of f along γ), denoted

I =

∫
γ

f(z)dz.

Before continuing with properties of complex integral, consider Riemann sums in
more detail. Denote f(z) = u+ iv, f(ζk) = uk + ivk, and zk − zk−1 = ∆xk + i∆yk.
Then∫

γ
f(z)dz = lim

|Ṗ|→0

∑n
k=1 f(ζk)(zk − zk−1) =

= lim
|Ṗ|→0

∑n
k=1(uk + ivk)(∆xk + i∆yk) =

= lim
|Ṗ|→0

∑n
k=1 ((uk∆xk − vk∆yk) + i(uk∆yk + vk∆xk)) =

= lim
|Ṗ|→0

∑n
k=1(uk∆xk − vk∆yk) + i lim

|Ṗ|→0
(uk∆yk + vk∆xk) =

=
∫
γ
u dx− v dy + i

∫
γ
v dx+ u dy,

where the two latter integrals are “usual” real valued curve integrals. Therefore,
we reduced complex integral to a special case of curve integrals. In particular, now
we don’t need to prove many of the properties of complex integral, but rather refer
to the real case.

One important implication is the following. It is known from calculus that if
γ = (µ, ν) : [a, b]→ R2 is a smooth curve in R2, then∫

γ

P (x, y)dx+Q(x, y)dy =

∫ b

a

(P (µ(t), ν(t))µ′(t) +Q(µ(t), ν(t))ν′(t))dt.

if the integral in the left hand side exists. Applying this to the integrals in the
last line of the chain of equalities in the previous paragraph, and performing the
same computation “bottom to top”, we get an important practical formula: if
γ = µ+ iν : [a, b]→ C is a smooth curve and f is integrable along γ, then

(9)

∫
γ

f(z)dz =

∫ b

a

f(γ(t))γ′(t)dt.

The advantage of this expression is that complex integral along a curve is reduced
to the “usual” Riemann integrals of real and imaginary parts of the integrand on
the right hand side.

3This is not a limit of a function, because S(f, Ṗ) is not a function of |Ṗ|. Proper way would

be to define it through ε–δ machinery in a usual way. We don’t do it here, because all proofs
of basic properties remain the same in either case. By the way, there is the same issue with the

“usual” real-valued Riemann integral. Another proper way of fixing this is using limits of nets.
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5.3. Examples and basic properties of complex integral. Now we give some
examples of complex integrals, computed by the definition and using formula (9).

• Integral of a constant. f(z) = 1, γ : [a, b] → C arbitrary s.t. γ(a) = z0,

γ(b) = Z. Compute the integral by definition. Let Ṗ be arbitrary. We have∫
γ

1dz = lim
|Ṗ|→0

∑n
k=1 1 · (zk − zk−1) =

= lim
|Ṗ|→0

zn − z0 = Z − z0,

as expected. In particular, the integral does not depend on a specific choice
of γ.
• Integral of a constant. Assume additionally that γ is smooth and use for-

mula (9): ∫
γ

1dz =

∫ b

a

1 · γ′(t)dt = γ(t)|ba = Z − z0.

Notice that the middle equality is obtained by applying real-value Funda-
mental Theorem of Calculus to Re and Im separately.
• Integral of a linear function f(z) = z. We know from the reduction to the

real case that linear functions are integrable along any rectifiable curves.
Therefore, to find the value of the integral, we can make a particular choice
of partitions and tags and take a limit. In a partition P, choose tags in two
ways: to be the left endpoints of partition intervals, and the right endpoints
of partition intervals:∫
γ

zdz = lim
|Ṗ|→0

zk−1(zk − zk−1), and

∫
γ

zdz = lim
|Ṗ|→0

zk(zk − zk−1).

Taking half-sum of these two equalities, we observe that most terms in the
right hand side cancel, so we get that∫

γ

zdz =
Z2

2
− z2

0

2
,

as expected. And again, integral does not depend on a specific choice of
path.
• Integral of a linear function. Assume additionally that γ is smooth and use

formula (9):∫
γ

zdz =

∫ b

a

γ(t) · γ′(t)dt = 1
2 γ

2(t)
∣∣b
a

=
Z2

2
− z2

0

2
.

As we plainly see in this example, computing integrals using Riemann sums
is more painful.

Notice that the middle equality above is not completely obvious. To
justify it, we differentiate Re and Im of γ2 and apply real-value Fundamental
Theorem of Calculus to them separately.
• Integral of 1

z . Consider f(z) = 1
z−a , a ∈ C, and γ a circle z = a + reit

traversed once, that is 0 ≤ t ≤ 2π. Then∫
γ

dz

z − a =

∫ 2π

0

(a+ reit)′dt

a+ reit − a =

∫ 2π

0

ireitdt

reit
=

∫ 2π

0

idt = 2πi.
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This gives an example of integral that depends on a choice of path of inte-
gration. Note, however, that in this particular example, the integral does
not depend on radius of the circle of integration.

In HW5, we do the same computation through Riemann sums.

Now that we have seen some examples, we continue with basic properties of
complex integral.

(1) Additivity over curves:∫
γ

f(z)dz = −
∫
−γ

f(z)dz,

where by −γ we mean the same curve γ, traversed in opposite direction.
(2) Additivity over curves:∫

γ

f(z)dz =

∫
γ1

f(z)dz +

∫
γ2

f(z)dz + · · ·+
∫
γn

f(z)dz,

where γ is concatenation of γ1, γ2, . . . , γn, denoted γ = γ1 + γ2 + · · ·+ γn.
Note that the equality can be read both ways: assuming γ is subdivided

into γ1 + · · ·+ γn, if either left side or right hand side of the above equality
exists, then the other side exists, too, and they are equal.

(3) Linearity: ∫
γ

n∑
k=1

ckfk(z)dz =

n∑
k=1

∫
γ

ckfk(z)dz,

where fk are functions defined on and integrable along γ, and ck ∈ C.
(4) Boundedness: If f is integrable along γ, |f(z)| ≤ M for all z ∈ γ, and l is

the length of γ, then ∣∣∣∣∫
γ

f(z)dz

∣∣∣∣ ≤Ml.

Properties (1), (3), (4) can be seen immediately from the definition of integral
(since corresponding statements hold when the integrals are replaced by their Rie-
mann sums). Property (2) also can be derived from the definition, but requires
some handwork. Instead, we just say that it holds since it holds for the respective
curve integrals, as was proven in calculus course.

Note that the properties above are an immediate translation of the corresponding
properties of the real-value curve integral on a plane. Not everything translates from
the real case as nicely. For example, in the HW5 it is shown that the Mean Value
Theorem for integral breaks in the complex case.

Lecture 6. Cauchy Integral Theorem. Some corollaries

March 1, 2017
Relevant Sections in Markushevich:

I.13.63–67.

6.1. Cauchy Integral Theorem. From this point on, we are going to usually deal
with functions differentiable on a “thick” set. To this end, we give the following
definitions.

Functions, complex differentiable on an domain D, are called holomorphic, or
analytic on D. We say that the function f is analytic at a point z0 if f is analytic
on a neighborhood of z0.
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Also, recall that functions that are complex differentiable on the whole complex
plane C are called entire.

Theorem 15. (Cauchy Integral Theorem, Cauchy–Goursat Theorem, Cauchy The-
orem) Let G be simply connected domain, and let f(z) be an analytic function on
G. Then ∫

L

f(z)dz = 0,

where L is any closed rectifiable curve contained in G.

Note that here we say that domain G, bounded or not, is simply connected if
and only if together with any closed simple curve γ, it also contains its interior
I(γ).

Proof of Cauchy’s integral theorem is organized into 6 steps, each successive step
dealing with more complicated curves L.

Step 1. In this step we prove the theorem for L that is a “bigon”, that is a
curve γ, traversed back and forth: L = γ − γ. In this case statement just follows
from additivity of integral over curves.

6.2. Goursat’s Lemma. Here we deal with a crucial special case of Cauchy The-
orem.

Step 2. In this step we prove the theorem for L that is a triangle (three points
on plane connected with straight line segments). This step is the essence of the
proof of Cauchy Theorem.

Lemma 2. (Goursat’s Lemma) Let G be simply connected domain, and let f(z) be
an analytic function on G. Then ∫

L

f(z)dz = 0,

where L is any triangle contained in G.

To prove this lemma, assume |
∫
L
f(z)dz| = M . Join midpoints of sides of L with

straight line segments. This splits L = L0 into four triangles LI , LII , LIII , LIV

similar to L with coefficient 1/2.
Note that∫

L

f(z)dz =

∫
LI
f(z)dz +

∫
LII

f(z)dz +

∫
LIII

f(z)dz +

∫
LIV

f(z)dz,

where LI , LII , LIII , LIV are traversed in the same directions as L. Therefore for
one of these four triangles, which we denote L1, we have∣∣∣∣∫

L1

f(z)dz

∣∣∣∣ ≥ M

4
.

(Otherwise absolute value of sum
∣∣(∫

LI
+
∫
LII

+
∫
LIII

+
∫
LIV

)
f(z)dz

∣∣ is less than

4 · M4 = M by triangle inequality.)
Doing the same with L1, obtain triangle L2. Proceeding in this fashion, we get

a sequence of triangles Ln, n = 1, 2, . . . with the following properties:

(1) Each Lk and its interior I(Lk) is contained in Lk−1 ⊆ G.

(2)
∣∣∣∫Lk f(z)dz

∣∣∣ ≥ M
4k
.

(3) Perimeter of each triangle Lk is l
2k

, where l is the perimeter of L = L0.
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Therefore, we have a nested system of closed triangles whose sides → 0 as n→∞.
It follows that they have a common point ζ: ζ ∈ Ln ∪ I(Ln), n = 1, 2, . . .. Since f
is analytic on G, f ′(ζ) exists, that is for any ε > 0, there is a δ > 0 such that

|f(z)− f(ζ)− f ′(ζ)(z − ζ)| < ε|z − ζ|,
if |z − ζ| < δ (see definition 8). Then, for any Ln contained in the disc Bδ(ζ), we
have ∣∣∣∫Ln(f(z)− f(ζ)− f ′(ζ)(z − ζ))dz

∣∣∣ =

=
∣∣∣∫Ln f(z)dz −

∫
Ln
f(ζ)dz −

∫
Ln
f ′(ζ)(z − ζ)dz

∣∣∣ =

=
∣∣∣∫Ln f(z)dz − f(ζ)

∫
Ln
dz − f ′(ζ)

∫
Ln

(z − ζ)dz
∣∣∣ =

=
∣∣∣∫Ln f(z)dz − 0− 0

∣∣∣ =

=
∣∣∣∫Ln f(z)dz

∣∣∣
Here we used that

∫
γ
dz = 0 and

∫
γ
zdz = 0 for any closed rectifiable curve γ, as

was mentioned above.
On the other hand, for z a point on Ln, we have |z − ζ| < {perimeter of Ln} =

l/2n, so by boundedness property of integral,∣∣∣∣∫
Ln

f(z)− f(ζ)− f ′(ζ)(z − ζ)

∣∣∣∣ < ∫
Ln

ε|z − ζ|dz < ε
l

2n
· l

2n
=
εl2

4n
.

Therefore, comparing the inequality above to the property (2) of Ln, we have

M

4n
≤
∣∣∣∣∫
Ln

f(z)dz

∣∣∣∣ ≤ εl2

4n
,

so

M ≤ εl2
for any ε > 0, so M = 0. This finishes proof of Goursat’s Lemma.

6.3. Finishing proof of Cauchy’s Integral Theorem. Now that we have Gour-
sat’s Lemma, the rest of the proof is technical.

Step 3. In this step we prove the theorem for L that is a convex n-gon. Since L
is a convex polygon, drawing all diagonals from one a vertex of L subdivides L into
n− 2 triangles. Integral along each triangle is 0 by the Step 2, so sum of integrals
along these triangles is also zero. But this sum is equal to the integral along L.

Step 4. In this step we prove the theorem for L that is an arbitrary n-gon.
Extending all sides of L to straight lines, we partition L into convex polygons,
reducing this case to Step 3. (Alternatively, one can also argue that every n-gon,
convex or not, has at least one interior diagonal, and proceed as in Step 3.)

Step 5. In this step we prove the theorem for L that is an arbitrary (possibly,
self-intersecting) polygonal curve. In this case we travel along L until we meet
the first point of intersecting with path that we already traversed. Note that the
loop that we traversed is a polygon (otherwise, we would have met a point of self-
intersection earlier). We can discard this loop from L, because by Step 4 integral
along it is zero. The remaining part of L has fewer vertices, so proceeding in the
same fashion, at some point we reduce L to a non self-intersecting polygonal curve,
i.e. to a curve covered by Step 4.

Step 6. Here we prove the theorem for L that is an arbitrary rectifiable curve.
This step is technically involved, but at the same time completely standard and
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not specific to complex analysis. The idea is that we can approximate an arbitrary
rectifiable curve by a polygonal curve without changing the value of the integral
too much. (Notice that the key statement below, Lemma 4 does not even ask the
function to be differentiable, nor the curve to be closed.)

Before we state the corresponding lemma, recall notion of distance between sets.
(The following definitions work for arbitrary metric spaces, but right now we only
care about C.)

If z ∈ C, and A ⊆ C, we say that the distance dist(z,A) is defined by

dist(z,A) = inf{|z − w| : w ∈ A}.
Similarly, if A,B are two subsets of C, we define

dist(A,B) = inf{|z − w| : z ∈ A,w ∈ B}.
Note that |z − w| is a continuous function of w, so it reaches its minimum and
maximum as w runs through points of a set A if A is closed and bounded. Moreover,
|z − w| is nonnegative and is ≥ R outside the circle |z − w| < R centered at z.
Therefore, dist(z,A) is attained as |z − w| for some w ∈ A if A is closed.

Further, it is not hard to show that dist(z,A) is a continuous function of z, so if
A,B are closed and A is bounded, then dist(A,B) is attained as |z − w| for some
z ∈ A,w ∈ B. Indeed, dist(A,B) is attained as some dist(z,B) since A is closed
and bouned, and dist(z,B) is attained as |z −w| since B is closed. One important
corollary is the following.

Lemma 3. If A,B are closed and one of them bounded, then A ∩ B = ∅ if and
only if dist(A,B) > 0.

Note that if both are unbounded, this may not be true, e.g. A the hyperbola
y = 1/x and B the x-axis.

Finally, a bit of notation: for a setA, byNr(A) we denote its closed r-neighborhood:

Nr(A) = {z ∈ C | dist(z,A) ≤ r}.
Since dist(z,A) is a continuous function of z, a closed neighborhood is a closed set.
(Exercise: prove that).

Reminder: for curves γ1 and γ2 s.t. the endpoint of γ1 is the start point of γ2,
by γ1 +γ2 we denote the concatenation of these curves, i.e. the curve that traverses
γ1, and then γ2. Also, by −−→z1z2 we denote the straight line segment connecting z1

to z2.

Lemma 4. Let f(z) be a continuous function on a domain G, L be an arbitrary
rectifiable curve on G given by z = λ(t), λ : [a, b] → G. Then for any ε > 0, there
is a δ > 0 such that for any partition P = {t0, t1, . . . , tn} of [a, b] with |P| < δ, the
polygonal curve Λ = −−→z0z1 + −−→z1z2 + . . . + −−−−→zn−1zn where zk = λ(tk), k = 0, 1, . . . , n,
is contained in G, and ∣∣∣∣∫

L

f(z)dz −
∫

Λ

f(z)dz

∣∣∣∣ < ε.

Proof. First, we find δ that delivers first part of statement, that is that Λ ⊆ G.
Since λ is a continuous function on closed interval [a, b], it is uniformly continuous
on this interval. Let d = dist(L,C \G). By the Lemma 3 above, d > 0. Put δ′ > 0
to be such that |λ(t)− λ(t′)| < d whenever |t− t′| < δ′.
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Then for any partition Ṗ with |Ṗ| < δ′, note that any point on the polygonal
curve Λ = −−→z0z1 + . . . + −−−−→zn−1zn lies distance at most d/2 from the corresponding
endpoint zk, i.e. Λ ⊆ Nd/2(L) ⊆ G.

We established that there exists δ′ > 0 such that Λ ⊆ G whenever |P| < δ′.
Now, we need to find δ0 ≤ δ′ that provides

∣∣∫
L
f(z)dz −

∫
Λ
f(z)dz

∣∣ < ε. Since f
is a function continuous on a closed bounded set Nd/2(L), f is uniformly continuous
on the same set, that is for any ε > 0, there is a δ′′ > 0 such that |f(z)−f(z′)| < ε

2l ,
whenever |z − z′| < δ′′, where l denotes length of L.

By definition of integral, there is a δ1 > 0 such that

(10)

∣∣∣∣∣
∫
L

f(z)dz −
n∑
k=1

f(zk)(zk − zk−1)

∣∣∣∣∣ < ε/2

for any partition P with |P| < δ1.
Take δ0 > 0 such that δ0 < δ′, δ0 < δ1, and |λ(t) − λ(t′)| < δ′′ if |t − t′| < δ0.

For any partition P with |P| < δ0 denote segment −−−−→zk−1zk by Λk. Then∣∣∣∣∣
∫

Λ

f(z)dz −
n∑
k=1

f(zk)(zk − zk−1)

∣∣∣∣∣ =

=

∣∣∣∣∣
n∑
k=1

∫
Λk

(f(z)− f(zk))dz

∣∣∣∣∣ ≤ ε

2l
· l = ε/2,

i.e.

(11)

∣∣∣∣∣
∫

Λ

f(z)dz −
n∑
k=1

f(zk)(zk − zk−1)

∣∣∣∣∣ ≤ ε/2
Then for any partition P with |P| < δ0, we have that Λ ⊆ G, and comparing (10)

and (11), by triangle inequality we get∣∣∣∣∫
L

f(z)dz −
∫

Λ

f(z)dz

∣∣∣∣ < ε/2 + ε/2 = ε.

This finishes proof of lemma. �

Now, back to proof of Step 6. For an arbitrary closed rectifiable curve L in G,
we take arbitrary ε > 0 and arbitrary approximation of L by a polygonal curve Λ
induced by partition as in statement of the above Lemma. Then we get∣∣∣∣∫

L

f(z)dz −
∫

Λ

f(z)dz

∣∣∣∣ < ε,

but by Step 5 we know that
∫

Λ
f(z)dz = 0, so∣∣∣∣∫

L

f(z)dz

∣∣∣∣ < ε,

for any ε, so
∣∣∫
L
f(z)dz

∣∣ = 0. This finishes proof of Cauchy’s Integral Theorem.
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6.4. Stronger version of Cauchy Integral Theorem.

Theorem 16. Let G be the interior of a closed simple curve L, G = I(L). Let f
be analytic on G and continuous on G = G ∪ L. Then∫

L

f(z)dz = 0.

Proof of this theorem is skipped (the proof is accessible at this point in the case
of G which is “nice” in certain way, star shaped. In general case, the proof requires
a whole new idea, approximation of functions by polynomials, and does not fit in
this course.)

Note that this version of Cauchy Theorem allows to deal with the following
integral, while original version does not:∫

L

√
zdz = 0,

where L is a circle |z − 1| = 1 passing through 0, and value of
√
z is chosen so that

resulting function is continuous on |z − 1| ≤ 1. Note that
√
z cannot be defined as

a single-valued analytic function on a neighborhood of 0, so the original version of
Cauchy theorem does not apply.

We will not rely on this theorem in the course.

6.5. Cauchy Theorem for a system of contours. Let’s recall how exactly we
used simple connectedness of G: we actually only needed that the interior I(L) is
contained in G. That allows us to state the following theorem:

Theorem 17. Let G be an arbitrary domain and let f(z) be an analytic function
on G. Then ∫

L

f(z)dz = 0,

where L is any closed simple rectifiable curve such that G contains both L and I(L).

This simple reformulation allows us to prove the following fact.

Theorem 18. (Cauchy’s Integral Theorem for a system of contours) Let G be an
arbitrary domain, let f(z) be analytic on G. Let Γ, γ1, . . . , γn be a system of n+ 1
simple closed rectifiable curves in G s.t.

(1) γ1, . . . , γn ⊆ I(Γ),
(2) γj ⊆ E(γk) for any j 6= k.,

(3) G contains D = I(Γ) \
(
I(γ1) ∪ . . . ∪ I(γn)

)
.

Then ∫
Γ

f(z)dz =

∫
γ1

f(z)dz + . . .+

∫
γn

f(z)dz,

where all integrals are traversed in the same direction.

Proof. (A figure will be provided in later drafts.) Pick points A0 on Γ, A1, B1 on
γ1, . . ., An, Bn on γn, B0 on Γ. Let γ′k be an arc of γk from Bk to Ak clockwise,
and γ′′k be an arc of γk from Ak to Bk clockwise. Let δk be a simple polygonal path
in G from Ak−1 to Bk, k = 1, . . . , n, and δn+1 be a simple polygonal path in G
from An to B0. Let Γ′ be an arc of Γ from B0 to A0 counterclockwise and Γ′′ be
an arc of Γ from A0 to B0 counterclockwise. Then for closed contours

L′ = δ1 + γ′1 + δ2 + γ′2 + . . .+ γ′n + δn+1 + Γ′
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and
L′′ = −δn+1 + γ′′1 − δ2 + γ′′2 − . . .+ γ′′n − δn+1 + Γ′′

by the previous theorem we have∫
L′
f(z)dz =

∫
L′′
f(z)dz = 0,

but

0 =

∫
L′+L′′

f(z)dz =

∫
Γ

f(z)dz +

∫
γ1

f(z)dz + . . .+

∫
γn

f(z)dz,

where Γ is traversed counterclockwise and γk are traversed clockwise, as required.
�

6.6. Application of Cauchy Integral Theorem to real variable integrals.
Cauchy Integral Theorem and its multiple contour version can be used nicely to
compute real variable integrals.

6.6.1. Integral of a rational function over R. Evaluate∫ ∞
−∞

dx

x2 + 1
.

Computing this integral using standard real calculus techniques is a simple task.
Nevertheless, here we provide a way to compute this integral using Cauchy’s Integral
Theorem. It will be clear that similar approach works for any rational function for
which the integral over the real line converges.

Consider the function f(z) = 1
z2+1 . This function is differentiable everywhere

on C, save for z = ±i. Consider two contours, L1 that consists of the segment AB:
−R ≤ x ≤ R, of the real line, and upper semicircle BCA of radius R centered at
the origin; and L2 which is a circle |z − i| = ε, ε < 1. Also let R > 1 + ε.

By Cauchy’s Integral Theorem for a system of contours,
∫
L1

dz
z2+1 =

∫
L2

dz
z2+1 .

First we treat the integral along L1.
On the segment AB we have z = x, dz = dx, therefore

J1(R) =

∫
AB

dz

z2 + 1
=

∫ R

−R

dx

x2 + 1
,

so J1(R) −→
∫∞
−∞

dx
x2+1 as R→∞ if the latter improper integral converges.

On the semicircle BCA we have z = Reiθ, 0 ≤ θ ≤ π, dz = iReiθdθ, so

J2(R) =

∫
BCA

dz

z2 + 1
=

∫ π

0

iReiθdθ

R2e2iθ + 1
,

so if R ≥ 2,

|J2(R)| ≤ R
∫ π

0

dθ

|R2e2iθ + 1| ≤ R
∫ π

0

dθ

R2/2
=

2π

R
,

hence J2(R)→ 0 as R→∞. Finally,

J3(ε) =

∫
L2

dz

z2 + 1
=

∫
L2

1

2i

(
1

z − i −
1

z + i

)
dz =

=

∫
L2

1

2i

dz

z − i −
∫
L2

1

2i

dz

z + i
=

1

2i
2πi− 0 = π,

since 1/(z + i) is analytic inside L2. Taking limit as R→∞ of the equality

J1(R) + J2(R) = J3,
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we get ∫ ∞
−∞

dx

x2 + 1
= π.

We will start the next lecture with looking at more applications of Cauchy Inte-
gral Theorem to real variable integrals.

6.6.2. Integral Sine at infinity. Evaluate the integral∫ ∞
0

sinx

x
dx.

Comment. The function Si(x) =
∫ x

0
sin t
t dt is called the integral sine function and,

along with sincx = sin x
x , is used in signal processing and Fourier analysis in general.

Consider the function

f(z) =
eiz

z
,

differentiable everywhere except z = 0, integrated along the path L which is an
“upper semiring” of inner radius r and outer radius R, as shown in Figure 2.

0

r R

A B

C

D E

F

Figure 2. Path L.

By Cauchy Theorem, we have

0 =

∫
L

eiz

z
dz =

∫
AB

eiz

z
dz +

∫
BCD

eiz

z
dz +

∫
DE

eiz

z
dz +

∫
EFA

eiz

z
dz.

Compute/estimate these integrals separately. On AB, we have z = t, where t
runs from r to R, so dz = dt and we have

(12) J1 =

∫
AB

eiz

z
dz =

∫ R

r

eit

t
dt =

∫ R

r

cos t

t
dt+ i

∫ R

r

sin t

t
dt.

On the circular arc BCD we have z = Reit, where t runs from 0 to π, so
dz = iReitdt, and

J2 =

∫
BCD

eiz

z
dz =

∫ π

0

exp(iReit)

Reit
iReitdt = i

∫ π

0

exp(iR cos t−R sin t)dt.

Therefore,

|J2| ≤
∫ π

0

| exp(iR cos t−R sin t)|dt =

∫ π

0

exp(−R sin t)dt = 2

∫ π/2

0

exp(−R sin t)dt.

Note that on [0, π/2], sin t ≥ 2t/π (look at the graphs of sin t and of 2t/π), so

|J2| ≤ 2

∫ π/2

0

exp(−R sin t)dt ≤ 2

∫ π/2

0

exp(−2Rt/π)dt =
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= 2
exp(−2Rt/π)

−2R/π

∣∣∣∣π/2
0

= π
1− e−R

R
<
π

R
.

Therefore,

(13) J2 → 0 as R→∞.
On DE, we have z = t, where t runs from −R to −r, so dz = dt, and similarly

to J1,

J3 =

∫
DE

eiz

z
dz =

∫ −r
−R

cos t

t
dt+ i

∫ −r
−R

sin t

t
dt = −

∫ R

r

cos t

t
dt+ i

∫ R

r

sin t

t
dt.

Putting this together with (12), we get that

(14) J1 + J3 = 2i

∫ R

r

sin t

t
dt.

Finally, on EFA, we have z = reit, where t runs from π to 0, so dz = ireit and

J4 =

∫
EFA

eiz

z
dz =

∫ 0

π

exp(ireit)

reit
ireitdt = −i

∫ π

0

exp(ir cos t− r sin t)dt.

Since eiz is continuous at 0, given ε > 0, find r small enough to guarantee that
|eiz − 1| < ε on EFA. Then∣∣∣∣J4 − (−i

∫ π

0

1dt)

∣∣∣∣ =

∣∣∣∣−i ∫ π

0

(exp(ir cos t− r sin t)− 1)dt

∣∣∣∣ ≤ ∣∣∣∣∫ π

0

εdt

∣∣∣∣ = πε,

so

(15) lim
r→0

J4 = −i
∫ π

0

1dt = −iπ.

Recall that by definition,∫ ∞
0

sin t

t
dt = lim

r→0
R→∞

∫ R

r

sin t

t
dt.

Now, we look at the limit of the equality

0 = J1 + J2 + J3 + J4

as R→∞ and r → 0. By (13),(14),(15), we get

0

��

= (J1 + J3)

��

+ J2

��

+ J4

��
0 = 2i

∫ ∞
0

sin t

t
dt + 0 + (−iπ),

that is,

0 = 2i

∫ ∞
0

sin t

t
dt+ (−πi).

so ∫ ∞
0

sin t

t
dt =

π

2
.

Remark. Computing this integral using real analysis methods is rather in-
volved. For example, note that this integral absolutely diverges, so powerful tools
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of Lebesgue integration like the Lebesgue dominated convergence theorem do not
apply.

6.6.3. Fresnel Integrals (optional section, was not included in the lecture). Evaluate∫ ∞
0

cosx2dx,

∫ ∞
0

sinx2dx.

Comment. These are called Fresnel integrals. Functions C(x) =
∫ x

0
cos t2dt and

S(x) =
∫ x

0
sin t2dt arise in several areas of geometry, physics (like theory of diffrac-

tions), and engineering.
We will use two auxiliary facts. First one is the formula∫ ∞

0

e−x
2

dx =

√
π

2
.

The second one is the inequality

sin θ ≥ πθ

2

(
0 ≤ θ ≤ π

2

)
.

To evaluate the Fresnel integrals, we consider the function eiz
2

. Since ez and iz2

are differentiable everywhere on C, by chain rule eiz
2

is also differentiable every-
where on C.

Consider closed contour L consisting of the segment OA: 0 ≤ x ≤ R of the
nonnegative real axis, the π

4 arc AB of the circle of radius R centered at origin,
and the segment BO of the line bisecting the angle formed by nonnegative real and
imaginary axes. By Cauchy’s Integral Theorem,∫

L

eiz
2

dz =

∫
OA

eiz
2

dz +

∫
AB

eiz
2

dz +

∫
BO

eiz
2

dz = 0.

Compute these three integrals separately. Segment OA is parameterized by a real
x, so

J1(R) =

∫
OA

eiz
2

dz =

∫ R

0

eix
2

dx =

∫ R

0

cosx2dx+ i

∫ R

0

sinx2dx.

On the arc AB, z = Reiθ, 0 ≤ θ ≤ π
4 , z2 = R2e2iθ, dz = iReiθdθ, so

J2(R) =

∫
AB

eiz
2

dz =

∫ π/4

0

exp(iR2e2iθ)iReiθdθ.

Finally, on the segment BO we have

z = reiπ/4, R ≥ r ≥ 0, z2 = r2eiπ/2 = ir2, dz = eiπ/4dr

and

J3(R) =

∫
BO

eiz
2

dz =

∫ 0

R

e−r
2

eiπ/4dr = −eiπ/4
∫ R

0

e−r
2

dr =

= −
√

2

2
(1 + i)

∫ R

0

e−r
2

dr.

Now, let R approach infinity: R→∞. Then

J3(R) = −
√

2

2
(1 + i)

∫ R

0

e−r
2

dr −→ −
√

2

2
(1 + i)

∫ ∞
0

e−r
2

dr =

= −
√

2

2
(1 + i)

√
π

2
= −
√

2π

4
(1 + i).
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Show that J2(R)→ 0 as R→∞.

|J2(R)| ≤ R
∫ π/4

0

| exp(iR2e2iθ)|dθ.

Note that | exp(iR2e2iθ)| = exp(−R2 sin 2θ), so

|J2(R)| ≤ R
∫ π/4

0

exp(−R2 sin 2θ)dθ.

Recall that sin 2θ ≥ 4θ/π if 0 ≤ 2θ ≤ π/2. Therefore,

|J2(R)| ≤ R
∫ π/4

0

exp(−R2 · 4θ/π)dθ = R
exp(−4R2θ/π)

−4R2/π

∣∣∣∣θ=π/4
θ=0

=

=
π

4

1− e−R2

R
≤ π

4R
,

so limR→∞ J2(R) = 0, as claimed. Finally, consider J1(R). Since J1(R) + J2(R) +
J3(R) = 0, it follows that

lim
R→∞

J1(R) = − lim
R→∞

J2(R)− lim
R→∞

J3(R) =

√
2π

4
(1 + i),

i.e.

lim
R→∞

∫ R

0

cosx2dx+ i

∫ R

0

sinx2dx =

√
2π

4
(1 + i),

which means that improper integrals∫ ∞
0

cosx2dx = lim
R→∞

∫ R

0

cosx2dx

and ∫ ∞
0

sinx2dx = lim
R→∞

∫ R

0

sinx2dx

exist and ∫ ∞
0

cosx2dx =

∫ ∞
0

sinx2dx =

√
2π

4
.

Remark. Computing these integrals using tools of real variable analysis is also
rather involved.

Lecture 7. Antiderivative. Cauchy’s Integral Formula and its
Corollaries

March 8, 2017
Relevant Sections in Markushevich:

I.13.68, I.14.70–72.
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7.1. Antiderivative. Fundamental theorem of calculus.

Definition 14. Let f(z) be a function on a domain G. A function F (z) defined
and analytic on G is called an antiderivative (primitive, indefinite integral) of f(z)
if F ′(z) = f(z) at each point z ∈ G.

For a function f analytic on simply connected domain G, integral along a closed
rectifiable curve vanishes. Therefore, the integral∫ z

z0

f(ζ)dζ

does not depend on a particular choice of path between two points z0, z, so for a
fixed z0, this integral is a well-defined function of z:

F (z) =

∫ z

z0

f(ζ)dζ.

Theorem 19. Let G be a simply connected domain, let f(z) be differentiable on
G. Then F (z) =

∫ z
z0
f(ζ)dζ is differentiable on G and F ′(z) = f(z) for each z ∈ G.

Proof. Compute F ′(z) by definition.

∆F =

∫ z+∆z

z0

f(ζ)dζ −
∫ z

z0

f(ζ)dζ =

∫ z+∆z

z

f(ζ)dζ =

= ∆zf(z) +

∫ z+∆z

z

(f(ζ)− f(z))dζ.

Then
∆F

∆z
= f(z) +

1

∆z

∫ z+∆z

z

(f(ζ)− f(z))dζ,

so ∣∣∆F
∆z − f(z)

∣∣ = 1
|∆z|

∣∣∣∫ z+∆z

z
(f(ζ)− f(z))dζ

∣∣∣ ≤
≤

∣∣ 1
∆zM(r) ·∆z

∣∣ = M(r)→ 0

as ∆z → 0 since f is continuous. Here M(r) denotes max |f(z) − f(ζ)| as ζ runs
through values such that |z − ζ| ≤ r.

By definition of derivative, F ′(z) = f(z). �

Remark. Note that we did not use differentiability of f other than to get
path independence of F . If we somehow know that integral representing F is path
independent, it is enough to require that f is merely continuous.

Theorem 20. Let G be a simply connected domain, and let f(z) be a differentiable
function on G. Then any antiderivative of f(z) on G can be represented as

Φ(z) =

∫ z

z0

f(ζ)dζ + C,

where z0 ∈ G and C is a constant.

Proof. This follows by one of problems in Homework 5. Just in case, we provide
the proof here, too.

Write

ϕ(z) = Φ(z)−
∫ z

z0

f(ζ)dζ = u(x, y) + iv(x, y).
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Then ϕ′(z) = 0, so

0 =
∂u

∂x
+ i

∂v

∂x
=
∂v

∂y
− i∂u

∂y
,

so
∂u

∂x
=
∂v

∂x
=
∂v

∂y
=
∂u

∂y
= 0.

Therefore, u(x, y) = const, v(x, y) = const, so ϕ(z) = const. �

Theorem 21. (Fundamental theorem of integral calculus for complex functions).
Let G be a simply connected domain, and let f(z) be a differentiable function on
G. Then if z0, z ∈ G, ∫ z

z0

f(ζ)dζ = Φ(z)− Φ(z0),

where Φ(z) is any antiderivative of f(z) on G.

Proof. By the previous theorem, it suffices to check this statement for Φ(z) =∫ z
z0
f(ζ)dζ. �

The latter statement allows to compute integrals of differentiable functions just
as we are used to, for example:∫ z

z0

ζkdζ =
zk+1

k + 1
− zk+1

0

k + 1
if k ∈ Z, k 6= −1,

∫ z

z0

eζdζ = ez − ez0 ,
∫ z

z0

cos ζdζ = sin z − sin z0,∫ z

z0

sin ζdζ = cos z0 − cos z.

Note that the first equality for k ≥ 0 follows by the Corollary above, but for
k ≤ −2, one needs to apply the Remark after Theorem 19, since zk in that case
is not differentiable at 0, but nevertheless integrals are path-independant, as direct
computation shows (for example, see Homework 6).

7.2. Cauchy’s Integral Formula. The theorem we prove below is of fundamental
importance in complex analysis.

Theorem 22. (Cauchy’s Integral Formula) If f(z) is differentiable on a domain
G, and if G contains a closed simple rectifiable curve γ and its interior I(γ), then∫

γ

f(ζ)

ζ − z dζ = 2πif(z) if z ∈ I(γ),

and ∫
γ

f(ζ)

ζ − z dζ = 0 if z ∈ E(γ),

where E(γ) denotes exterior of γ.
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Note that it is assumed that γ is traversed counterclockwise, that is I(γ) is to
the left of an observer moving along γ.

Under assumptions of this theorem, the integral

1

2πi

∫
γ

f(ζ)

ζ − z dζ

is called Cauchy’s integral.

Proof. Let z be arbitrary in I(γ). Then the function

g(ζ) =
f(ζ)

ζ − z
is analytic on G′ = G\{z}. Let ρ be so small that the closed disc Bρ(z) is contained
in I(γ). Then, if γρ denotes circle |ζ − z| = ρ, by Cauchy’s Integral Theorem for a
system of contours γ, γρ we have∫

γ

g(ζ)dζ =

∫
γρ

g(ζ)dζ,

that is ∫
γ

f(ζ)

ζ − z dζ =

∫
γρ

f(ζ)

ζ − z dζ.

Since
∫
γ
f(ζ)
ζ−z dζ does not depend on a particular choice of ρ, neither does

∫
γρ

f(ζ)
ζ−z dζ,

so ∫
γρ

f(ζ)

ζ − z dζ = lim
ρ→0

∫
γρ

f(ζ)

ζ − z dζ.

So to prove statement of the theorem for z ∈ I(γ), it suffices to prove that

lim
ρ→0

∫
γρ

f(ζ)

ζ − z dζ = 2πif(z).

That is, we need to prove that for any ε > 0, one can find δ > 0 such that∣∣∣∣∣
∫
γρ

f(ζ)

ζ − z dζ − 2πif(z)

∣∣∣∣∣ < ε

whenever ρ < δ. Write f(ζ) = f(z) + α(ζ). Since∫
γρ

dζ

ζ − z = 2πi,

we see that ∣∣∣∣∣
∫
γρ

f(ζ)

ζ − z dζ − 2πif(z)

∣∣∣∣∣ =

=

∣∣∣∣∣
∫
γρ

f(z) + α(ζ)

ζ − z dζ − f(z)

∫
γρ

dζ

ζ − z

∣∣∣∣∣ =

=

∣∣∣∣∣
∫
γρ

α(ζ)

ζ − z dζ
∣∣∣∣∣ .

Now, since f(ζ) is continuous at ζ = z, for any ε > 0 we can find δ > 0 such that

|α(ζ)| < ε

2π
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whenever |z − ζ| < δ. Therefore, if ρ < δ, we have∣∣∣∣∣
∫
γρ

f(ζ)

ζ − z dζ − 2πif(z)

∣∣∣∣∣ =

∣∣∣∣∣
∫
γρ

α(ζ)

ζ − z dζ
∣∣∣∣∣ ≤

∣∣∣∣∣
∫
γρ

|α(ζ)|
ρ

dζ

∣∣∣∣∣ < ε/2π

ρ
2πρ = ε,

as desired.
It is only left to note that the case when z ∈ E(γ) is a direct consequence of

Cauchy Integral Theorem. �

Example. Straightforward application of Cauchy Integral Formula allows to
evaluate certain integrals without much computation. For example, show that∫

γ

dz

z2 + 1
= 0

for any simple closed rectifiable curve γ s.t. ±i ∈ I(γ). Let γ1, γ2 be circles ⊆ I(γ)
centered at −i, i, respectively, and traversed in the same direction as γ. Then we
have by Cauchy Theorem for multiple contours (Therem 18) and by Cauchy Integral
Formula∫

γ

dz

z2 + 1
=

∫
γ1

dz

z2 + 1
+

∫
γ2

dz

z2 + 1
=

=

∫
γ1

1/(z − i)
z + i

dz +

∫
γ2

1/(z + i)

z − i dz = 2πi 1
−i−i + 2πi 1

i+i = 0.

7.2.1. Average value of an analytic complex function. Below is the first corollary
to Cauchy Integral Formula.

Theorem 23. If f(z) is a differentiable function on a domain G, and if G contains
the circle γρ: |z − z0| = ρ and its interior I(γρ), then

f(z0) =
1

2π

∫ 2π

0

f(z0 + ρeiθ)dθ,

i.e., the value of f(z) at z0 equals to the average of its values on the circle γρ with
center z0.

Proof. The equation of γρ is

z = z0 + ρeiθ, 0 ≤ θ ≤ 2π.

By Cauchy’s integral formula,

f(z0) =
1

2πi

∫
γρ

f(z)dz

z − z0
=

1

2πi

∫ 2π

0

f(z0 + ρeiθ)

ρeiθ
iρeiθdθ =

1

2π

∫ 2π

0

f(z0 + ρeiθ)dθ.

�

Note that in real variable analysis there is a class of functions with the same
average-value property, harmonic functions, that is, solutions of Laplace equation

∆f = 0, e.g. ∂2f
∂x2 + ∂2f

∂y2 = 0. We will discuss harmonic functions and their connec-

tion to complex analytic functions in more detail later on.
The following is a direct corollary of the above Theorem 23.

Corollary 1. If f(z) is a differentiable function on a domain G, and if G contains
the circle γρ: |z − z0| = ρ and its interior I(γρ), then

|f(z0)| ≤M(ρ) = max
z∈γρ
|f(z)|.
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Proof. By Theorem 23,

|f(z0)| = 1

2π

∣∣∣∣∫ 2π

0

f(z0 + ρeiθ)dθ

∣∣∣∣ ≤ 1

2π
M(ρ) · 2π = M(ρ).

�

Note that since γρ is a closed bounded set and f is continuous, M(ρ) is attained
at some point ζ ∈ γρ: M(ρ) = |f(ζ)|.

Theorem 24. If f is an differentiable on a domain G, then |f(z)| cannot have a
local strict maximum at any point of G.

Proof. Suppose z0 is a point of local strict maximum of |f(z)|. Let γρ be same
as above. Then |f(z0)| ≤ M(ρ) = |f(ζ)|. Since ρ can be chosen arbitrarily small,
in any neighborhood of z0 there is a point ζ such that |f(z0)| ≤ |f(ζ)|, so the
inequality |f(z0)| > |f(ζ)| does not hold and, therefore, z0 is not a point of local
strict maximum. �

Later on we will strengthen this theorem by showing that it also holds for non-
strict maximum (with obvious exception to constant functions).

7.3. Integrals of the Cauchy type. By an integral of the Cauchy type we mean
expression of the form

1

2πi

∫
L

ϕ(ζ)

ζ − z dζ,

where L is a rectifiable curve (not necessarily closed), z /∈ L, ϕ is a function
(sometimes called density) continuous on L.

Theorem 25. Every integral of the Cauchy type

f(z) =
1

2πi

∫
L

ϕ(ζ)

ζ − z dζ

defines an infinitely differentiable function f(z) on any domain G containing no
points of L. Moreover,

f (n)(z) =
n!

2πi

∫
L

ϕ(ζ)

(ζ − z)n+1
dζ (n = 0, 1, 2, . . .).

Proof. We prove this statement by induction on n. For n = 0, the corresponding
formula is

f (0)(z) =
1

2πi

∫
L

ϕ(ζ)

(ζ − z)1
dζ,

which is the definition of f(z). Suppose we established that

f (n)(z) =
n!

2πi

∫
L

ϕ(ζ)

(ζ − z)n+1
dζ

for a specific n. Find f (n+1) by straightforward differentiation of f (n):

f (n+1)(z0) = lim
z→z0

f (n)(z)− f (n)(z0)

z − z0
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where z0 is arbitrary point inG. For ρ small enough, G contains circle γρ = |z−z0| =
ρ and its interior. Let δ be distance between γρ and the curve L. Moreover, let R
be large enough to contain L and γρ. Then

f (n)(z)− f (n)(z0) =
n!

2πi

∫
L

ϕ(ζ)
(ζ − z0)n+1 − (ζ − z)n+1

(ζ − z0)n+1(ζ − z)n+1
dζ.

Write t = ζ − z0, h = z − z0, so ζ − z = t− h. Then using identity

an − bn = (a− b)(an−1 + an−2b+ . . .+ abn−2 + bn−1)

we get

f (n)(z)− f (n)(z0)

h
=

n!

2πi

∫
L

ϕ(ζ)
(t− h)n + t(t− h)n−1 + . . .+ tn

tn+1(t− h)n+1
dζ.

Since our goal is to show that the expression above approaches the limit

ψ(z0) =
(n+ 1)!

2πi

∫
L

ϕ(ζ)

(ζ − z0)n+2
dζ =

(n+ 1)!

2πi

∫
L

ϕ(ζ)

tn+2
dζ,

as h→ 0, we now examine the difference (the point of the computation below is that
the terms tn+1, i.e., the terms without h, cancel out, as you can see by inspecting
numerator in the second line of the computation)

f (n)(z)− f (n)(z0)

h
− ψ(z0) =

=
n!

2πi

∫
L

ϕ(ζ)
t(t− h)n + t2(t− h)n−1 + . . .+ tn+1 − (n+ 1)(t− h)n+1

tn+2(t− h)n+1
dζ =

=
n!

2πi

∫
L

ϕ(ζ)
h(t− h)n + h[t+ (t− h)](t− h)n−1 + . . .+ h[tn + . . .+ (t− h)n]

tn+2(t− h)n+1
dζ =

=
n! · h
2πi

∫
L

ϕ(ζ)
(t− h)n + [t+ (t− h)](t− h)n−1 + . . .+ [tn + . . .+ (t− h)n]

tn+2(t− h)n+1
dζ.

Recall that 0 < δ ≤ |ζ − z0| = |t| ≤ 2R, and 0 < δ ≤ |ζ − z| = |t − h| ≤ 2R.
Therefore ∣∣∣∣f (n)(z)− f (n)(z0)

h
− ψ(z0)

∣∣∣∣ ≤
≤ n! · |h|

2π
·M · (2R)n + 2(2R)n−1 + . . .+ n(2R)n

δ2n+3
· l,

where l is the length of L and

M = max
ζ∈L
|ϕ(ζ)|.

The righthand side goes to 0 as h→ 0, so

f (n+1)(z0) = lim
z→z0

f (n)(z)− f (n)(z0)

z − z0
=

(n+ 1)!

2πi

∫
L

ϕ(ζ)

(ζ − z0)n+2
dζ.

�
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7.4. Infinite differentiability of complex differentiable functions; Morera’s
Theorem. An important corollary (below) is that complex differentiable functions
are infinitely differentiable. Note that in general, this is not the case at all when
dealing with real-differentiable functions. For instance, f(x) = x2 sin(1/x3) ex-
tended to x = 0 by 0 is differentiable everywhere on R but its derivative is not
bounded on a neighborhood of 0, therefore it’s discontinuous at 0. A less exotic
function, f(x) = x|x| is an example of an everywhere differentiable function whose
derivative is continuous but not differentiable everywhere. Worse, if f : R → R
is a function continuous everywhere but not differentiable everywhere (Weierstrass
gave an example of such a function; one can also prove that they exists by a Baire

category argument), then its integral
∫ t
t0
f(τ)dτ is differentiable at every point but

not differentiable twice at any point.

Corollary 2. If f(z) is a differentiable function on a domain G, then f(z) is
infinitely differentiable on G.

Proof. Let z0 ∈ G. Choose ρ small enough so the circle γρ : |z−z0| = ρ is contained
in G together with its interior I(γρ). Then by Cauchy’s Integral Formula, we have

f(z0) =
1

2πi

∫
γρ

f(ζ)

ζ − z0
dζ,

so f is represented by an integral of the Cauchy type. By Theorem 25, f is infinitely
differentiable. �

Note that, in particular, we have an expression for n-th derivative:

f (n)(z) =
n!

2πi

∫
γρ

f(ζ)

(ζ − z)n+1
dζ,

where γρ can (by Cauchy’s integral theorem) be replaced by any closed rectifiable
simple curve L contained in G together with its interior such that z ∈ I(L).

Below is the same result in a slightly different wording.

Corollary 3. If f(z) is a differentiable function on a domain G, then every its
derivative f (n)(z) (n = 1, 2, . . .) is differentiable on G.

The next result serves as a converse to Cauchy’s integral theorem.

Theorem 26. (Morera’s Theorem) Let f(z) be a continuous function on a simply
connected domain G, and suppose that∫

L

f(z)dz = 0

for any closed rectifiable curve L contained in G. Then f(z) is differentiable on G.

Proof. For z, z0 ∈ G, the integral

F (z) =

∫ z

z0

f(ζ)dζ

is path-independent. Then by the argument similar to the proof of Theorem 19 (see
Remark after the proof of Theorem 19), F (z) is differentiable and F ′(z) = f(z).
But then by the corollary above it follows that F ′ = f is differentiable. �
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7.5. Cauchy Inequalities. Liouville’s theorem.

Theorem 27. (Cauchy Inequalities) Let f(z) be a differentiable function on a
domain G and suppose G contains the circle γρ : |z− z0| = ρ and its interior I(γρ).
Then

|f (n)(z0)| ≤ n!
M(ρ)

ρn
(n = 0, 1, 2, . . .),

where
M(ρ) = max

z∈γρ
|f(z)|.

Proof. From Theorem 25 we immediately get that

|f (n)(z0)| ≤ n!

2π

M(ρ)

ρn+1
2πρ = n!

M(ρ)

ρn
.

�

Note that knowledge of an upper bound M(ρ) for f is sufficient to write the
estimates for all derivatives of f . We will use these inequalities later on.

Again, note that in the case of real variable there is no, and there cannot be,
such estimates. Indeed, if for f(x) = sin(Ax), f ′(x) = A cos(Ax), so already the
first derivative can be arbitrarily large, despite |f | being bounded by 1.

One corollary of Cauchy Inequalities is the famous Liouville’s theorem.

Theorem 28. (Liouville) If f(z) is differentiable on C and bounded, then f(z) =
const.

Proof. Let M be an upper bound for |f | on C. At every point z ∈ C, we have by
Cauchy Inequalities that f ′(z) ≤ M

ρ for every ρ > 0, so f ′(z) = 0 and therefore f

is constant. �

Remark. The essential part in the proof was that M(ρ)
ρ → 0 as z → ∞. So

the proof would still work under that condition that f(z)
z → 0 (z → ∞) instead

of boundedness. It means that there are no entire functions “squeezed” between
bounded and linear functions, like square root or logarithm would be.

Later we will give an even more immediate proof of Liouville’s theorem and look
into its consequences.

Corollary 4. (Fundamental theorem of algebra) Every non-constant polynomial
with complex coefficients P (z) has at least one complex root.

Proof. Suppose P has no complex roots. Then |P (z)| 6= 0. Since P is a continuous
function and P (z) → ∞ (z → ∞), there exists m > 0 such that |P (z)| ≥ m > 0
(because |P | is “large” outside some disk |z| < R and has a minimum on the disk
|z| ≤ R). Then the function f(z) = 1

P (z) is analytic and bounded by 1
m , so by

Liouville’s theorem, f(z) = const. Then P (z) = const, i.e. P is of non-positive
degree. �

Lecture 8. Corollaries of Cauchy Integral Formula. Functions
series

March 22, 2017
Relevant Sections in Markushevich:

II.5.22, I.14.72, I.15.75
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8.1. Harmonic functions. Now that we know that every differentiable on a do-
main function f is infinitely differentiable and therefore so are its real and imaginary
parts, we can observe the following. Let f(z) = u(x, y) + iv(x, y), where u, v are
real-valued functions of real variables x, y, be analytic on a domain G. Then by
Cauchy–Riemann equations and by infinite differentiability of u, v, we have

∂2u

∂x2
+
∂2u

∂y2
=

∂

∂x

∂v

∂y
+

∂

∂y

(
−∂v
∂x

)
= 0,

that is u satisfies the Laplace equation ∆u = 0 on G (where ∆ = ∂2

∂x2 + ∂2

∂y2 ). Such

functions are called harmonic on the domain G. Same computation can be done
for v, so we obtain the following statement.

Theorem 29. If f(z) = u(x, y) + iv(x, y), where u, v are real-valued functions of
real variables x, y, is analytic on a domain G, then u and v are harmonic on the
same domain.

Now we can answer the reasonable question, which functions u(x, y) can be
completed into an analytic function f = u+ iv? The above theorem asserts that u
must be harmonic. We show in the next theorem that this requirement is sufficient
(if the domain is simply connected).

For a given harmonic u, a function v such that u + iv is analytic is called a
harmonic conjugate of u. Note that this is not exactly a symmetric relation: if v is
a harmonic conjugate of u, then u is a harmonic conjugate of −v.
Example. u(x, y) = 2xy. Note that ∆u = 0. Find its harmonic conjugate. We
have ∂v

∂y = 2y, so v = y2 + C(x). To find C(x), differentiate ∂v
∂x = C ′(x). We have

∂v
∂x = −∂u∂y , so C ′(x) = −2x, and C = x2 +C0, so v = y2−x2 + c0. This is of course

unsurprising since f(z) = −iz2 is an analytic function with Re f = 2xy.

Theorem 30. Let u(x, y) be a harmonic function on a simply connected domain G.
Then there exists a unique up to an additive real constant function v(x, y) harmonic
on the domain G such that f(z) = u(x, y)+iv(x, y) is analytic on the same domain.

Proof. Finding such v amounts to solving a partial differential equation

∂v
∂x = P (x, y), where P (x, y) = −∂u

∂y
,

∂v
∂y = Q(x, y), where Q(x, y) =

∂u

∂x
.

As we know from PDEs or multivariable real analysis, in the event when ∂P
∂y = ∂Q

∂x

(which is the case since u is harmonic), a solution v(x, y), up to an additive constant,
is given by

v(x, y) =

∫ (x,y)

(x0,y0)

P (x, y)dx+Q(x, y)dy,

where (x0, y0), (x, y) ∈ G. Note that the integral is path independent by Green’s
theorem and simple connectedness of G. �

Example. Consider u(x, y) = 4x3y − 4xy3. Then we have by the above formula

v(x, y) =

∫ (x,y)

(x0,y0)

(−4x3 + 12xy2)dx+ (12x2y − 4y3)dy = −x4 + 6x2y2 − y4 + C0,
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where the computation can be done, for example, by picking a curve that consists
of two straight line segments joining points (x0, y0), (x, y0), (x, y); or a straight line
from (x0, y0) to (x, y). Note that the answer is hardly surprising since u(x, y) =
Im(z4) = Re(−iz4).
Example. For those who are not fans of curve integrals, the same computation
can be carried out in terms of single-variable integration. Indeed, consider the same
u(x, y) = 4x3y − 4xy3. Then if we are to satisfy Cauchy–Riemann equations, we
have

∂v

∂x
= −∂u

∂y
= −4x3 + 12xy2.

Integrating, we get

v =

∫
(−4x3 + 12xy2)dx = −12x4 + 6x2y2 + C(y).

To find C(y), we check the other Cauchy–Riemann equation:

∂v

∂y
= 0 + 12x2y + C ′(y) =

∂u

∂x
= 12x2y − 4y3,

So C(y) = −y4 + C0, which gives that same answer as we obtained before, v =
−x4 + 6x2y2 − y4 + C0. (Note that one can show that x is cancelled out in the
above equation precisely because u is harmonic.)
Remark. Note that the requirement of the domain to be simply connected is
essential. If the domain is multiply connected, we may get a multivalued function v.
To get an idea of what is going on in such case, look at u(x, y) = 1

2 ln(x2 + y2).
Observe the following. Suppose u, v are harmonic conjugates. Then the function

(u+ iv)2 = u2 − v2 + 2iuv is analytic and therefore u2 − v2 is harmonic. This can
be generalized in the following theorem.

Theorem 31. (Composition of harmonic functions) Let u, v be conjugate harmonic
functions on a domain G. For any function g = s + it analytic on the image of
G under u+ iv, the functions s(u(x, y), v(x, y)), t(u(x, y), v(x, y)) are harmonic on
G, and the latter is a harmonic conjugate of the former.

Proof. Denote u+ iv = f . Then g ◦f is analytic on G by chain rule. The statement
follows by Theorem 29. �

For example, if u, v are harmonic conjugates, then so is uv, and its harmonic
conjugate is − 1

2 (v2 − u2).

8.2. Change of variable in the complex integral. Another thing that we are
equipped to deal with now that we know that analytic functions are infinitely
differentiable is change of variable in the complex integral.

Theorem 32. (Change of variable in the complex integral) Let f(z) be a differ-
entiable function on a domain G, let L be a rectifiable curve contained in G, with
image Λ = f(L) under the map z → w = f(z). Then Λ is a rectifiable curve and∫

Λ

Φ(w)dw =

∫
L

Φ(f(z))f ′(z)dz,

where Φ(w) is any continuous function on Λ.
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Proof. First we need to show that both integrals exist. (Note that before we estab-
lished Corollary 2, we couldn’t even assert that the integral on the right hand side
exists since f ′ could hypothetically ruin integrability. In real variable, there are
plenty such functions, e.g., f(x) = x2 sin(1/x2) is differentiable but its derivative is
unbounded and therefore not integrable on a neighborhood of 0.)

Since f is differentiable, by Corollary 2 so is f ′, and, in particular, f ′ is continuous
on L. Therefore the integral

∫
L

Φ(f(z))f ′(z)dz exists.
To show that the left hand side integral exists, we show that Λ is rectifiable. Let

P be a partition of domain of function parameterizing L, let z0, . . . , zn be points
on L corresponding to partition points of P, and let wk = f(zk), k = 0, 1, . . . , n.
Then

sup
P

n∑
k=1

|wk − wk−1| = sup
P

n∑
k=1

∣∣∣∣∫
σk

f ′(z)dz

∣∣∣∣ ≤M n∑
k=1

lk = Ml,

where σk is the piece of L joining zk−1 and zk, lk is the length of σk, l is the length
of L, and

M = max
z∈L

f ′(z).

The latter maximum is finite because f ′ is continuous and L is a closed bounded
set. Therefore,

sup
P

n∑
k=1

|wk − wk−1| <∞

and Λ is rectifiable.
Second, to prove the equality between integrals, we note that by fundamental

theorem of calculus,∫
Λ

Φ(w)dw = lim
|P|→0

n∑
k=1

Φ(wk)(wk − wk−1) =

= lim
|P|→0

n∑
k=1

Φ(wk)
∫
σk

f ′(z)dz =

= lim
|P|→0

n∑
k=1

∫
σk

Φ(f(zk))f ′(z)dz

while ∫
L

Φ(f(z))f ′(z)dz = lim
|P|→0

n∑
k=1

∫
σk

Φ(f(z))f ′(z)dz.

Then ∫
Λ

Φ(w)dw −
∫
L

Φ(f(z))f ′(z)dz =

= lim
|P|→0

n∑
k=1

∫
σk

[Φ(f(zk))− Φ(f(z))]f ′(z)dz.

Note that since Φ(f) is continuous on L, it is uniformly continuous, so for partitions
fine enough, given arbitrary ε > 0 we have

|Φ(f(zk))− Φ(f(z))| < ε

for all k = 1, 2, . . . , n. Therefore, for fine enough partitions∣∣∣∣∣
n∑
k=1

∫
σk

[Φ(f(zk))− Φ(f(z))]f ′(z)dz

∣∣∣∣∣ ≤Mεl,

so
∫
Λ

Φ(w)dw −
∫
L

Φ(f(z))f ′(z)dz = 0. �
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8.3. Function series. Now we start next major topic, studying analytic functions
through their Taylor series. At this point we know that every complex differentiable
on an open set function is infinitely differentiable on the same set, by Corollary 2.
By itself, that does not mean that the function is represented by its Taylor series.
For example, this is not always the case for infinitely differentiable real functions,

as we can see by considering the function f(x) = e−1/x2

, extended to 0 by f(0) = 0.
It is not hard to see that this is a infinitely differentiable function with f (n)(0) = 0,
so its Taylor series at x = 0 is 0.

Our goal for the moment is to show that every complex differentiable on an open
set function is indeed represented by its Taylor series, which will finally justify the
use of the term analytic function. For that, in the remaining part of this lecture we
recall some results about function series.

Let
∞∑
n=0

fn(z) = f1(z) + f2(z) + . . .+ fn(z) + . . .

be an infinite series of functions defined on a set E ⊆ C. By sn(z), n = 0, 1, 2, . . .,
we denote n-th partial sum of this series:

sn(z) = f0(z) + f1(z) + . . .+ fn(z).

Definition 15. The series
∑∞
n=1 fn(z) is said to converge to a function f(z) uni-

formly on E if given any ε > 0, there exist an integer N > 0 such that

|f(z)− sn(z)| < ε

for any integer n > N and any point z ∈ E.

Theorem 33. (Cauchy Criterion) Series
∑∞
n=0 fn(z) converges uniformly on E if

given any ε > 0, there exists an integer N > 0 such that

|sn(z)− sm(z)| < ε

for any integers m,n > N and any point z ∈ E.

Proof. See calculus. �

Remark. Of course, we may consider series where terms are indexed by numbers
starting from any integer n0, for example,

∑∞
n=3 fn.

Example. Consider power series
∑∞
n=0 z

n on sets E1 = {z | |z| < 1/2}, E2 =
{z | |z| < 1}, E3 = {z | |z| < 10}.

On E1 the series converges uniformly, as will be evident from the next theorem.
On E3 the series diverges. On E2 the series does converge as a geometric series
with ratio z, |z| < 1. Show that it does not converge uniformly on E2. Indeed,

|sn+p(z)− sn(z)| = |zn+1 + . . .+ zn+p| = |z|
n+1|1− zp|
|1− z| ≥ |z|

n+1|1− |z|p|
|1− z| .

Take p = n and z = n−1
n .

|s2n(z)− sn(z)| ≥ n
(

1− 1

n

)n+1(
1−

(
1− 1

n

)n)
→∞

since
(
1− 1

n

)n → e−1. Therefore, Cauchy criterion fails for this series on E2.
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Theorem 34. (Weierstrass M -test) Given a convergent number series
∑∞
n=0Mn,

where Mn ∈ R, Mn ≥ 0, suppose that functions f0(z), f1(z), . . . are such that
|fn(z)| ≤ Mn for all z ∈ E and n exceeding some fixed number N > 0. Then∑∞
n=0 fn(z) is convergent uniformly on E.

Proof. Let sn(z) = f0(z) + . . .+ fn(z), and Sn = M0 + . . .+Mn. For definiteness,
let n > m. Then

|sn(z)− sm(z)| ≤ |fm+1(z)|+ . . .+ |fn(z)| ≤Mm+1 + . . .+Mn = |Sn − Sm|.
The statement follows by Cauchy criterion. Work out details. �

In the above example, the uniform convergence on E1 follows directly from this
theorem with Mn =

(
1
2

)n
.

Theorem 35. Suppose
∞∑
n=0

fn(z) = f(z)

is uniformly convergent on E, and each fn(z) is continuous on E. Then f(z) is
continuous on E.

Proof. Use |f(z)−f(z0)| ≤ |f(z)−sn(z)|+ |sn(z)−sn(z0)|+ |sn(z0)−f(z0)|. Work
out details. �

Theorem 36. Given a rectifiable curve L, suppose

∞∑
n=0

fn(z) = f(z)

is uniformly convergent on L, and every fn is continuous on L. Then the series
above can be integrated term by term along L, that is

∞∑
n=0

∫
L

fn(z)dz =

∫
L

∞∑
n=0

fn(z)dz =

∫
L

f(z)dz.

Proof. First of all, f is continuous on L by the previous theorem, so the integral∫
L
f(z)dz is defined.

Second, since
∑∞
n=0 fn(z) is uniformly convergent on L, choose N such that

|sn(z)− f(z)| < ε/l

for every n > N and z ∈ L, where l is the length of L. Then for each n > N we
have ∣∣∣∣ n∑

k=0

∫
L

fk(z)dz −
∫
L

f(z)dz

∣∣∣∣ =

∣∣∣∣∫
L

n∑
k=0

fk(z)dz −
∫
L

f(z)dz

∣∣∣∣ =

=

∣∣∣∣∫
L

(sn(z)− f(z)) dz

∣∣∣∣ ≤
≤ l · ε/l = ε.

�

We are now ready to prove that every analytic complex function is represented
by its Taylor series. We will do that in the next lecture.
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Lecture 9. Taylor Series. Weierstrass’ theorem

March 29, 2017
Relevant Sections in Markushevich:

I.15.75, I.16.78–79.

9.1. Taylor expansion.

Theorem 37. (Taylor series) Let function f be analytic on a domain G. Let a be
a point in G, and let the circle γρ : |z − a| = ρ be contained in G together with
interior I(γρ). Then f(z) can be represented as a sum of series

f(z) =

∞∑
n=0

cn(z − a)n at every z ∈ I(γρ),

where

cn =
f (n)(a)

n!
=

1

2πi

∫
γρ

f(ζ)

(ζ − a)n+1
dζ.

Moreover, this series converges uniformly in I(γρ).

Proof. We have z ∈ I(γρ) and ζ ∈ γρ. Note that

1
ζ−z = 1

(ζ−a)−(z−a) = 1
ζ−a

1
1− z−aζ−a

=

= 1
ζ−a

∞∑
n=0

(
z−a
ζ−a

)n
=

=
∞∑
n=0

(z−a)n

(ζ−a)n+1 .

Note that |z−a||ζ−a| = |z−a|
ρ < 1, so by Weierstrass M -test (Theorem 34), the series

above converges uniformly in ζ ∈ γρ. Therefore we can integrate such series term
by term. We have

f(z) =
1

2πi

∫
γρ

f(ζ)

ζ − z dζ =
1

2πi

∫
γρ

∞∑
n=0

f(ζ)(z − a)n

(ζ − a)n+1
dζ =

=

∞∑
n=0

(
1

2πi

∫
γρ

f(ζ)(z − a)n

(ζ − a)n+1
dζ

)
=

∞∑
n=0

(
1

2πi

∫
γρ

f(ζ)

(ζ − a)n+1
dζ

)
(z − a)n =

=

∞∑
n=0

f (n)(a)

n!
(z − a)n.

To prove uniform convergence of the above series, note that by Cauchy’s inequal-

ities (Theorem 27), |cn| =
∣∣∣ f(n)(a)

n!

∣∣∣ ≤ M(ρ1)
ρn1

for any ρ1 such that the circle γρ1 is

contained in G together with its interior.

Then taking such ρ1 > ρ, we get that | f
(n)(a)
n! (z − a)n| ≤ M(ρ1)

(
ρ
ρ1

)n
, so the

series converges uniformly on γρ by, again, Weierstrass M -test. �

The theorem above asserts, among other things, that if a function is complex
differentiable once, then it is infinitely differentiable and, moreover, equals to the
sum of its Taylor series. This justifies the use of the term analytic function whenever
we are talking about a function, complex differentiable on an open set. (Recall that
we also can use another term, holomorphic function.)
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Corollary 5. In the above notation, |cn| ≤ M(ρ)
ρn .

Proof. Follows directly from Cauchy inequalities (Theorem 27), or from the proof
above. �

Now we have another way to prove Liouville’s Theorem 28. Recall that functions
analytic on C are called entire.

Theorem 28 (Liouville) If f(z) entire and bounded, then f(z) = const.

Proof. For n ≥ 1, |cn| ≤ M(ρ)
ρn for any ρ, so |cn| = 0, and, therefore f(z) = c0. �

So, Liouville’s theorem says that a bounded entire function must be constant.
Another way to state the Liouville’s theorem is the following: if a function is
analytic on C, then it is constant. (We say that a function f(z) is analytic at
z = ∞ if f(1/z) is analytic at z = 0. At this point of the course it is not entirely
clear why being bounded and being analytic at ∞ are equivalent conditions in this
case, but we will see that they indeed are once we get to classification of singular
points.)

9.2. Radius of convergence of a power series. Now that we know that every
analytic function is represented by its Taylor series, there is a natural question
whether the converse is true; that is, whether the sum of a power series is an
analytic function. Another reason for asking this question is that, as it will be
apparent in the next lecture, it is precisely what is missing to fully take advantage
of Taylor expansion. To investigate this question, we first recall some classic facts
about power series.

Reminder. Let (xn) be a sequence in R. A number x ∈ R or +∞ is called an
accumulation point (sometimes called limit point or cluster point) of (xn) if every
open neighborhood of x contains infinitely many terms of (xn) (by a neighborhood
of +∞ we mean any open ray (a,+∞).)

For example, ((−1)n) has two accumulation points: ±1. A sequence that has
a limit l has only one accumulation point, l. If a sequence (qn) enumerates all
rational numbers, then the set of its accumulation point is R ∪ {±∞}.

For a sequence (xn) in R, its upper limit (or limit superior) lim supn→∞ xn is
the supremum of the set of accumulation (limit) points of xn. As a convention, for
our purposes, we allow lim sup to be +∞ (which corresponds to the sequence (xn)
being unbounded above); or −∞ (which corresponds to the sequence having limit
−∞). One can show that the set S of limit points of a sequence is closed, so we
can replace supremum with maximum.

Examples. lim supn→∞(−1)n = 1. lim supn→∞(−1)n + 1
n = 1.

lim sup(0, 1, 0, 2, 0, 3, . . .) =∞. lim sup(0,−1,−2, . . .) = −∞.
Note that for a limit superior of a real sequence always exists as a real number,

+∞, or −∞.

Theorem 38. (Cauchy–Hadamard) Given the power series

a0 + a1(z − z0) + a2(z − z0)2 + . . . ,

let R = 1
Λ , where

Λ = lim sup
n→∞

n
√
|an|,

and let γ be the circle |z−z0| = R with interior I(γ) and exterior E(γ). Then there
are three possibilities:
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(1) If R = 0, the series diverges ∀z 6= z0.
(2) If 0 < R < ∞, the series is absolutely convergent ∀z ∈ I(γ) and divergent
∀z ∈ E(γ).

(3) If R =∞, the series is absolutely convergent for all z ∈ C.

Proof. Follows from the following lemma (known as root test).

Lemma 5. Let
∞∑
n=0

bn be a complex series. Let ` = lim sup
n→∞

n
√
|bn|. The series

converges if ` < 1 and diverges if ` > 1.

Proof of Lemma. If ` < 1, take any ` < s < 1. The series is ultimately dominated
by
∑
sn, which converges.

If ` > 1, take any 1 < s < `. The series has infinitely many terms > sn, thus
fails nth term test. See calculus for details. �

To prove the theorem, consider

` = lim sup
n→∞

n
√
|an(z − z0)n| = |z − z0|Λ

and compare this value to 1. �

Circle γ is called the circle of convergence, I(γ) is called the disc of convergence,
and R is called the radius of convergence.

Remark. The convergence is uniform on every closed disc (therefore, every
closed set) contained in I(γ) (this will be stated in the next lecture as a separate
theorem).

Remark. On the other hand, uniform convergence on the whole I(γ) fails. We
will prove later that it fails always (for nonconstant functions), but for now we at
least have an explicit example (see example after Theorem 33).

Remark. Finally, note that the theorem above does not assert anything about
convergence at points of the circle γ itself, and for a good reason: the set of points
of γ where the series converges depends on the series and may be very complicated.

It is easy to use Taylor expansion Theorem 37 to deduce that following notable
functions expand as Taylor series that converge everywhere, i.e. have infinite radius
of convergence. At z0 = 0 the series take the following form:

ez =

∞∑
n=0

zn

n!
, cosh z =

∞∑
n=0

z2n

(2n)!
, sinh z =

∞∑
n=0

z2n+1

(2n+ 1)!
,

sin z =

∞∑
n=0

(−1)n
z2n+1

(2n+ 1)!
, cos z =

∞∑
n=0

(−1)n
z2n

(2n)!
.

For example, perform the necessary computations in the case of sin z. Compute
derivatives directly:

sin(4k) z = sin z, sin(4k+1) z = cos z, sin(4k+2) z = − sin z, sin(4k+3) z = − cos z.

Plugging in z0 = 0, we get that sin z =
∑∞
n=0(−1)n z2n+1

(2n+1)! . Now find the radius of

convergence using Cauchy–Hadamard theorem (note that the computation below is
not really necessary, because sin z is entire, so any ρ can be used in Taylor expansion
Theorem 38). Nevertheless, we have

Λ = lim sup
n→∞

n
√
|cn|,
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where cn = 0 for even n and c2k+1 = 1/(2k + 1)! for odd n = 2k + 1. lim n
√

0 = 0

and, since by calculus lim n
√
nn/n! = e, lim 2k+1

√
1/(2k + 1)! = 0, so

Λ = lim sup
n→∞

n
√
|cn| = max{0, 0} = 0,

and therefore R =∞.

It is also easy to establish that 1
1−z expands at z0 = 0 as

1

1− z =

∞∑
n=0

zn,

with radius of convergence 1, either by taking lim sup n
√

1 = 1, or by arguing that
the largest open disc centered at 0 that fits in C \ {1} is of radius 1. (Notice
that neither argument is really necessary for this series, as it is just the sum of a
geometric series.)

We will deal with expansion of arbitrary rational function P (z)/Q(z) later. For
now, we can give an instructive example. If f(z) = az+b

(z−c)(z−d) with c, d 6= 0 and

c 6= d, then we can decompose

f(z) =
az + b

(z − c)(z − d)
=

A

z − c +
B

z − d =
−A
c
· 1

1− z
c

+
−B
d
· 1

1− z
d

.

The two latter functions can be expanded using the Taylor series for 1/(1 − z).
Radius of convergence is in this case min{|c|, |d|}, as it follows from problems of
Homework 9, or as can be seen by a direct computation according to Cauchy–
Hadamard Theorem 38, or by application of Taylor expansion Theorem 37.

As one more example of applying Cauchy–Hadamard theorem, consider the series∑
nnzn

n

. The sequence n
√
|cn| has terms 0 and nn

√
nn (not n

√
nn = n). Notice that

lim nn
√
nn = 1, so Λ = max{0, 1} = 1, and R = 1.

Finally, we include a brief note about Ratio Test. One may recall that, for a

power series
∞∑
n=0

an(z − z0)n, whenever the limit Λ = lim
n→∞

∣∣∣an+1

an

∣∣∣ exists, it gives

the radius of convergence R = 1/Λ. The proof is based on the same idea as that
of “root test” Theorem 38, that is comparing to a geometric series. Applying the
ratio test is often easier than root test, but it is not hard to observe that ratio
test may fail irreparably even in a simple situation (see example below), while
Cauchy–Hadamard Theorem 38 based on root test works always.

Example. Consider the series
∞∑
n=0

(3+(−1)n)nzn. Applying Cauchy–Hadamard

Theorem we get

Λ = lim sup
n→∞

n
√

(3 + (−1)n)n = lim sup (2, 4, 2, 4, . . .) = 4,

so R = 1
4 . Now construct sequence

(
|an+1

an
|
)

and try to apply ratio test,(∣∣∣∣an+1

an

∣∣∣∣) =

(
42

2
,

23

42
,

44

23
, . . . ,

42k

22k−1
,

22k+1

42k
, . . .

)
.

We see that the subsequence of odd terms converges to 0 and that of even terms
to∞. Therefore not only the limit does not exist, but also Λ = 4 is not even among
the accumulation points of the sequence. Further, for any given 0 ≤ Λ ≤ ∞ it is
not hard to similarly construct a series for which ratio test produces a sequence
with accumulation points 0,∞. So accumulation points of the sequence in the ratio
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test may not be enough to extract any information about the radius of convergence.
In this sense, ratio test fails irreparably for such series, as stated above.

9.3. Weierstrass’ theorem on uniformly convergent series of analytic func-
tions. Recall that a subset K ⊆ C is called compact if it is closed and bounded.

Theorem 39. (Weierstrass’ theorem on uniformly convergent series of analytic
functions) If the series

∞∑
n=0

fn(z) = f(z)

is uniformly convergent on every compact subset of a domain G, and if every term
fn(z) is analytic on G, then f(z) is analytic on G. Moreover, the series can be
differentiated term by term any number of times, i.e.

∞∑
n=0

f (k)
n (z) = f (k)(z) ∀z ∈ G,∀k ≥ 0

and each differentiated series is uniformly convergent on every compact subset of G.

Proof. Let z0 ∈ G. Pick γ : |z − z0| = ρ such that I(γ) ∪ γ ⊆ G. Multiplying the
equality

∞∑
n=0

fn(z) = f(z)

by k!
2πi(z−z0)k+1 , we get

k!

2πi

∞∑
n=0

fn(z)

(z − z0)k+1
=

k!

2πi

f(z)

(z − z0)k+1
.

Show that the convergence of the above series is uniform on γ. Indeed, it follows
by Cauchy criterion (Theorem 33):∣∣∣∣∣
M∑
n=N

fn(z)/(z − z0)k

∣∣∣∣∣ =
1

|z − z0|k

∣∣∣∣∣
M∑
n=N

fn(z)

∣∣∣∣∣ =
1

ρk

∣∣∣∣∣
M∑
n=N

fn(z)

∣∣∣∣∣→ 0 (M,N →∞).

By Theorem 36 this series can be integrated term-wise:

k!

2πi

∞∑
n=0

∫
γ

fn(z)

(z − z0)k+1
dz =

k!

2πi

∫
γ

f(z)

(z − z0)k+1
dz.

Since all fn are analytic, by Cauchy Integral Formula (Theorem 22), k!
2πi

∫
γ

fn(z)
(z−z0)k+1 dz =

f
(k)
n (z0), so

∞∑
n=0

f (k)
n (z0) =

k!

2πi

∫
γ

f(z)

(z − z0)k+1
dz.

For k = 0, we have
∞∑
n=0

fn(z0) =
1

2πi

∫
γ

f(z)

z − z0
dz.

Note that the left hand side is equal to f(z0), so

f(z0) =
1

2πi

∫
γ

f(z)

z − z0
dz,
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where f(z) (in the integrand) is continuous on γ as a uniform (on γ) limit of
continuous functions. We get that f =

∑∞
n=0 fn is represented by an integral of

Cauchy type. By Theorem 25 f is, therefore, differentiable.
Since we now know that f is differentiable, for k > 0 we get that righthand side

is equal to f (k)(z0), so we have

∞∑
n=0

f (k)
n (z) =

k!

2πi

∞∑
n=0

∫
γ

fn(z)

(z − z0)k+1
dz =

k!

2πi

∫
γ

f(z)

(z − z0)k+1
dz = f (k)(z).

To prove the last part of the statement, the uniformity, we need the following
lemma.

Lemma 6. Convergence of a series
∑
gn(z) is uniform on compact subsets of a do-

main G if and only if every point of G has a neighborhood on which the convergence
is uniform.

Proof. The⇒ direction follows immediately since by considering a closed (therefore
compact) neighborhood of a given point.

The other direction ⇐ follows by Heine–Borel theorem: given a compact set
K, each its point possesses a neighborhood on which the convergence is uniform.
By compactness (Heine–Borel theorem), K can be covered by finitely many such
neighborhoods, which is enough for uniformity on the whole K. �

By the lemma above, to establish that the differentiated series is uniformly con-
vergent on every compact subset of G, it is enough to show that every point z0 ∈ G
has a neighborhood on which the series converges uniformly. For a point z0, con-
sider the open disc Bρ/2(z0). Pick n such that |sn(z) − f(z)| < ε on γ (here sn
stands for the n-th partial sum

∑n
j=0 fj(z)). Then for any z ∈ Bρ/2(z0), we have∣∣∣∣∣∣

n∑
j=0

f
(k)
j (z)− f (k)(z)

∣∣∣∣∣∣ =

∣∣∣∣∣∣ k!

2πi

n∑
j=0

∫
γ

fj(ζ)

(ζ − z)k+1
dζ − k!

2πi

∫
γ

f(ζ)

(ζ − z)k+1
dζ

∣∣∣∣∣∣ =

=

∣∣∣∣ k!

2πi

∫
γ

sn(z)− f(z)

(ζ − z)k+1
dζ

∣∣∣∣ ≤ k!

2π

ε

(ρ/2)k+1
2πρ→ 0

as ε→ 0. (The denominator part of the last inequality is provided by |ζ − z| ≥ ρ/2
since ζ ∈ γ and z ∈ Bρ/2(z0).) �

Note that G being a domain is essential, as the following two examples show.
(They also demonstrate that the statement of Weierstrass theorem fails in R.)

Example 1. ϕ(x) =
∑∞
n=0 b

n cos(anπx), where x ∈ R, 0 < b < 1, ab > 1 + 3π
2

is uniformly convergent (dominated by
∑
bn), but one can show that the function

ϕ(x) is not differentiable at any point of R. This example shows that the first part
of the statement (analyticity) can fail if G is not a domain. (Note that the limit
is still continuous as a uniform limit of continuous functions. So this is also an
example of a continuous but nowhere differentiable function.)

Example 2. Series

sinx+

(
sin 2x

2
− sinx

)
+

(
sin 3x

3
− sin 2x

2

)
+ . . .

is uniformly convergent to 0 on R (because sn ≤ 1/n), but differentiating the series
termwise gives a divergent series cosx+(cos 2x− cosx)+(cos 3x− cos 2x)+. . .. This
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example shows that the second part of the statement (term-wise differentiation) can
fail if G is not a domain.

Switching from series to sequences, we get the following corollary.

Corollary 6. (Weierstrass’ theorem on uniformly convergent sequences of analytic
functions) If the sequence (gn(z)) uniformly converges to g(z) on every compact
subset of a domain G, and if every term gn(z) is analytic on G, then g(z) is analytic
on G. Moreover, the sequence can be differentiated term by term any number of

times, i.e. (g
(k)
n (z))→ g(k)(z), and each differentiated sequence converges uniformly

on every compact subset of G.

Proof. Formally put g0 = 0 and define fn(z) = gn(z) − gn−1(z). The statement
now follows by Weierstrass’ Theorem 39. �

Lecture 10. Uniqueness theorems. Maximum modulus principle

April 5, 2017
Relevant Sections in Markushevich:

I.16.79, I.17.82-83

10.1. Sum of a power series is analytic. Now, note that if γ : |z − z0| = R
is the circle of convergence of a power series a0 + a1(z − z0) + . . ., then the series
is uniformly convergent on every compact subset of I(γ) by Weierstrass M -test,
so Weierstrass theorem 39 applies to convergence of a power series on the disc
I(γ) = {|z − z0| < R}.

Remark. Uniform convergence on I(γ) fails. We will prove later that it fails
always (for nonconstant functions), but for now we at least have an explicit example
(see example after Theorem 33).

Recall that so far we know that an analytic function can be represented by its
Taylor series. What about other way around? That is, given a power series, can
we assert that its sum is an analytic function? The answer is yes. More exactly,
the following theorem holds.

Theorem 40. The power series

f(z) =

∞∑
k=0

ak(z − z0)k

with radius of convergence R defines an analytic function f(z) on the disc K :
|z − z0| < R, and the coefficients a0, a1, . . . are given by

ak =
f (k)(z0)

k!
.

Moreover, the series f(z) can be differentiated term by term any number of times,
and each differentiated series converges uniformly on compact subsets of K.

Proof. Since the convergence is uniform on compact subsets of K (as mentioned
above), the assertion follows by Weierstrass’ Theorem 39. �

One important consequence is the following statement.

Theorem 41. If f is analytic on a domain G, and f(z0) = 0 for a point z0 ∈ G,

then g(z) = f(z)
z−z0 (extended to z = z0 by continuity) is analytic on the domain G.
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Proof. Analyticity of g at all points of G except for z = z0 follows immediately
from rules of differentiation. Analyticity of g at z = z0 follows from the theorem
above and the fact that the radii of convergence of

∞∑
n=1

an(z − z0)n and

∞∑
n=1

an(z − z0)n−1

coincide. �

Note that while this theorem is easy to take for granted, it is not obvious (at
least, not without the machinery we developed). For example, if we consider a very
“tame” function f(z) = z, we can see that f(0) = 0, but f(z)/z cannot be even
extended continuously to z = 0 (for example, because f(x)/x = 1 for 0 6= x ∈ R
and f(iy)/(iy) = −1 for 0 6= y ∈ R).

Also note that for a differentiable function R → R s.t. f(0) = 0, the ratio
f(x)/x, even if defined by continuity at 0, can easily be non-differentiable at 0, e.g.
f(x) = x|x|.
10.2. Uniqueness theorems.

Theorem 42. If the sums of two power series
∞∑
n=0

an(z − z0)n,

∞∑
n=0

bn(z − z0)n

coincide in a neighborhood of z0, then an = bn for all n ≥ 0.

Proof. It’s a direct consequence of Theorem 40, since all derivatives at z0 are
uniquely determined by values of a function on an arbitrarily small neighborhood
of z0. �

Theorem 43. If the sums of two power series
∞∑
n=0

an(z − z0)n,

∞∑
n=0

bn(z − z0)n

coincide on a sequence (zn) of distinct points such that zn → z0, then an = bn.

Proof. Since the sum of a power series is a continuous function within the radius
of convergence, we have that

a0 = lim
n→∞

(a0 + a1(zn − z0) + . . .) = lim
n→∞

(b0 + b1(zn − z0) + . . .) = b0.

Proceed by subtracting a0 = b0 from both series and dividing by (z − z0). �

Example 1. Does there exist a nonzero entire function f such that f(1/n) = 0
for each positive integer n? No. Indeed, set zn = 1/n and z0 = 0 in the above
theorem. We get that all Taylor coefficients of f(z) and of 0 are the same, so f = 0.

Example 2. Does there exist a nonzero analytic on {Re z > 0} function f such
that f(1/n) = 0 for each positive integer n? Yes, for example f(z) = sin(πz ). This
does not contradict the above theorem, since f does not have a Taylor expansion
at 0 (the limit of 1/n). (In other words, since the limit of 1/n is not in the domain
of analyticity of f .)

To generalize the above two examples in the next theorem, we recall a topological
notion. (The following definition works for an arbitrary topological space, but we
are going to need it only for C.)
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Given a set E ⊆ C, a point z ∈ C is called a limit (or accumulation, or cluster)
point of E if any open neighborhood of z contains a point of E, distinct from z
itself. This is equivalent to z being a limit of a sequence of distinct points in E.

It is not hard to see that the set of all limit points of a given set E is always
closed.

Theorem 44. (Interior uniqueness theorem) Suppose two functions analytic on a
domain G coincide on a set that has a limit point in G. Then f and g coincide on
the whole domain G.

Proof. Consider the set E = {z ∈ G | f(z) = g(z)}. Let E1 be the set of all limit
points of E in G. Note that E1 is closed in G since it is a set of limit points. Note
also that it is open by the previous theorem. Indeed, let z0 be a limit point of
E, so there is a sequence zn → z0 with zn ∈ E. By the previous theorem, Taylor
expansions of f and g at z0 are equal, so E, and therefore E1, contains an open
disc centered at z0, as required.

Now, recall that by definition of a domain, G is a connected set, so any subset of
G that is both open and closed in G must be either empty or the entire G. We are
given that E1 contains at least one point, so the former is impossible, and therefore
E1 = G. It is only left to note that since both f and g are continuous, f = g on
E1, so f = g on G. �

This theorem is quite strong: it allows to assert that two analytic functions
are equal on a domain G provided only that they are equal on a some set E that
possesses a limit point in G.

Example 1. Is there a complex differentiable on C function f(z) s.t. f(x) = 0

for x ≤ 0 and f(x) = e−1/x2

for x > 0? No, because f(z) would have to coincide
with 0.

Example 2. Is there a complex differentiable on C function f(z) s.t. f(x) =
sinx for x > 0 and f(x) = cosx− 1 + x if x ≤ 0? No, because f(z) would have to
coincide with both sin z and cos z − 1 + z.

Example 3. We can now prove the addition formulas (6),(7) for cos and sin
without any computations, granted that we know them for the real variable. For
example, prove the formula (6): cos(z1 + z2) = cos z1 cos z2 − sin z1 sin z2.

Indeed, if z1 is fixed and real, the left hand side and right hand side are functions
of a complex variable z2, and we know that these functions coincide if z2 is real.
By the Interior uniqueness theorem 44, we conclude that these functions must be
the same for all complex z2. Now, fix arbitrary complex z2 and consider both sides
as functions of a complex variable z1. We already know that if z1 is real, these
functions coincide. Therefore, by Interior uniqueness theorem they coincide for all
complex z1. Recall that z2 was arbitrary complex, so the left hand side and the
right hand side coincide for all complex z1, z2.

Example 4. The uniqueness part of Theorem 10 (existence and uniqueness
of the exponential) now follows immediately. So the proof condenses to “consider
f(z) = ex(cos y+ i sin y). It satisfies all conditions of the theorem, and it is unique
by the Interior uniqueness theorem”.

10.3. Maximum Modulus Principle. Recall that as an immediate consequence
of Cauchy integral formula, we proved Theorem 24 which asserted that a differ-
entiable on a domain function cannot have a local strict maximum of its absolute



64 ANDREY NIKOLAEV

value at any point of the domain. Now, as promised, we can prove the same about
non-strict maximum.

Theorem 45. (Maximum Modulus Principle) If f(z) is a nonconstant analytic
function on a domain G, then |f(z)| cannot have a non-strict local maximum at
any point of G.

Proof. Suppose not, that is at some point z0 we have a neighborhood Br(z0) such
that for any z ∈ Br(z0),

|f(z0)| ≥ |f(z)|.
Expand f into a Taylor series at z0:

f(z) = a0 + ak(z − z0)k + ak+1(z − z0)k+1 + . . .

where a0 = f(z0) 6= 0 (otherwise |f(z0)| = 0 so f = 0 on Br(z0) and, by uniqueness
theorem, f = 0 on G), and ak is the first nonzero coefficient among a1, a2, . . . (if
there are none, f(z) = const). Write

f(z) = f(z0) +B(z − z0)k(1 + ϕ(z)),

where B = ak and ϕ(z) = 1
B (ak+1(z−z0)+ak+2(z−z0)2 + . . .), i.e. ϕ is continuous

(in fact, analytic) on G and ϕ(z0) = 0. Pick z ∈ Br(z0), z 6= z0 so that

ArgB(z − z0)k = Arg f(z0)

and r so that ϕ(z) is small enough (|ϕ(z)| < 1/10 suffices). Then

|f(z)| = |f(z0) +B(z − zk)k(1 + ϕ(z))| > |f(z0)|,
(see Figure 3) contradicting the initial assumption. �

a0 = f(z0)

a0 +B(z − z0)k

a0 +B(z − z0)k +B(z − z0)k · ϕ(z)

|f(z)| = |a0 +B(z − z0)k(1 + ϕ(z))|

|f(z0)| = |a0|

Figure 3. To guarantee |f(z)| > |f(z0)|, we only need the marked
angle to be obtuse, for which ϕ(z) < 1/10 is certainly enough.

Another way to put the above theorem is to say that if an analytic function has
a non-strict maximum of its absolute value at a point of G, then the function is
constant. Yet another way to say the same is the following: an analytic function
cannot reach local non-strict maximum of its absolute value at an interior point of
a set.

A similar proof works for so-called minimum modulus principle (with the dif-
ference that one has to make sure the argument of B(z − z0)k is opposite of the
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argument of a0). Alternatively, it can be deduced as a direct corollary of the max-
imum modulus principle.

Corollary 7. (Minimum Modulus Principle) The absolute value of a nonconstant
analytic function on a domain G cannot have a minimum at any point of G, which
is not a zero of f(z).

Proof. Apply Maximum Modulus Principle to 1/f(z). �

10.4. Schwarz’s Lemma.

Theorem 46. (Schwarz’s Lemma) Let f(z) be a function which is analytic on the
disc K : |z| < R, f(0) = 0 and suppose that

|f(z)| ≤M <∞
for all z ∈ K. Then

|f(z)| ≤ M

R
|z|

for all z ∈ K, and

|f ′(0)| ≤ M

R
.

Either equality is achieved if and only if f is a linear function

f(z) = eiα
M

R
z,

where α ∈ R.

Proof. Note that function ϕ(z) = f(z)/z is analytic on K. Consider a disc Kρ :
|z| < ρ with a ρ < R. Denote by γρ the circle |z| = ρ. Then by Maximum Modulus

Principle (Theorem 45), |ϕ| cannot achieve it’s maximum on Kρ at a point of Kρ,
so

max
z∈Kρ

|ϕ(z)| = max
z∈γρ
|ϕ(z)| = max

z∈γρ

∣∣∣∣f(z)

ρ

∣∣∣∣ =
M(ρ)

ρ
≤ M

ρ
.

Note that this inequality holds for every ρ < R, so it also holds for ρ = R. But this
is exactly what the theorem asserts:

|f(z)|
|z| ≤

M

R
.

Further, f ′(0) = a1 = ϕ(0), so in particular,

f ′(0) ≤ M

R
.

By the equality part of Maximum Modulus Principle (Theorem 45), equalities are
only achieved for a constant ϕ(z), that is, for f(z) = C · z. In that case, |C| must
be equal to M/R, so f(z) = eiαMR z. �

This fact has following geometric interpretation. If image of a disc K under an
analytic map is inside a disc L, then the image of a smaller disc K ′ under the same
map is a proportionally smaller disc L′ inside L.

Recall that every Möbius transformation of the form

w(z) = eiα
z − a
1− āz

with α ∈ R and |a| < 1 sends the closed unit disc |z| ≤ 1 to itself (this can be
checked by verifying that |w(z)| = 1 whenever |z| = 1). Schwarz’s Lemma has a
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really nice consequence asserting that there are no other bijective analytic maps
from unit disc to itself.

Theorem 47. Let K be the closed unit disc |z| ≤ 1. Suppose map f : K → K is
analytic on the open disc |z| < 1, continuous on K, and bijective on the open disc.
Then f is of the form

f(z) = eiα
z − a
1− āz

for some α ∈ R and a ∈ C, |a| < 1.

Proof. Suppose f(0) = a. Consider Möbius map

ϕ(z) =
z − a
1− āz .

Note that composition F (z) = ϕ(f(z)) sends the open disc {|z| < 1} bijectively
onto itself, and, moreover, F (0) = 0. That is, F satisfies conditions of Schwarz’s
Lemma with M = 1 and R = 1. Therefore,

|F (z)| ≤ |z|
for all z ∈ K (the inequality for |z| = 1 follows by continuity). Note that the map
F−1 is well defined and also satisfies conditions of Schwarz’s Lemma, therefore,

|F−1(w)| ≤ |w|
for all w ∈ K. Comparing these two inequalities, we conclude that |F (z)| = |z|. By
Schwarz’s Lemma, this is only possible if F (z) = eiαz. So,

f(z) = ϕ−1(eiαz) = eiα
z − b
1− b̄z

with b = −ae−iα. �

Lecture 11. Singular points. Laurent series

April 12, 2017
Relevant Sections in Markushevich:

I.17.84, II.1.1

11.1. Singular points and the radius of convergence of Taylor series. Note
that if a function f is analytic in the disc |z − z0| < R, then by Theorem 37 the
radius of convergence of Taylor series of f at z0 is at least R. On the other hand, if
we for any reason know that function f can not be defined as an analytic function
on a disc |z − z0| < R′, then the radius of convergence of Taylor series of f at z0 is
less than R′. (The same argument applies to determine r and R for Laurent series.)

For example, consider f(z) = 1/(1 + z2). It is not hard to find directly that
R = 1, but it can be seen immediately since f takes infinite value at ±i. By
the way, this gives a coherent reason why Talyor series of a real-valued function
1/(1 + x2) diverges at x = ±1, while the function itself is perfectly fine at x = ±1
and the rest of the real line.

Another example is f(z) =
∫∞

0
e−ztdt. The integral converges in Re z > 0 and

diverges in Re z < 0. A direct computation shows that f(z) = 1
z for z ∈ {Re z > 0}.

So, at a point z0 ∈ {Re z > 0}, the radius of convergence of Taylor series is not
Re z0, as would appear from the fact that the integral diverges for Re z < 0, but
rather |z0| since f(z) can be extended analytically by f(z) = 1

z to C \ 0.
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The latter example highlights the following issue: given a function f on a disc
|z − z0| < R, the condition whether the function can be extended analytically to
a larger disc |z − z0| < R + ε may be hard to check. Below we make an effort to
replace it with a local condition, so that we do not have to worry about the whole
annular strip R < |z − z0| < R+ ε at once.

Let K be a disc {|z− z0| < R}, and Γ its circle {|z− z0| = R}. Given a function
f on the disc K and a point a ∈ Γ, we say that the point a is a regular point w.r.t.
the pair (f,K) if there is a function fa on the disc Ka = {|z − a| < ρ} for some
ρ > 0 s.t. fa is analytic and fa = f on the intersection K ∩Ka (in other words,
if f extends analytically to a neighborhood of a). Otherwise, we say that a ∈ Γ is
singular w.r.t. the pair (f,K).

Note. If a is a singular point w.r.t. the pair (f,K), then it is a singular point
w.r.t. any other pair (f,K ′) if a happens to be on the boundary circle of K ′. We
therefore can call such points just singular points of f , without specifying a disc K.

Turns out, a function can be extended analytically beyond a circle K if and only
if every point is regular. More specifically, the following theorem holds.

Theorem 48. A function given by a power series at z0 with radius of convergence R
has at least one singular point on the circle |z − z0| = R.

Proof. Let f be given by a Taylor series on its disc of convergence K = {|z− z0| <
R}, and suppose every point on the circle Γ = {|z − z0| = R} is regular w.r.t.
(f,K).

Take a union of all circles Ka with K: put K̃ = K ∪⋃a∈ΓKa. Define a function

f̃ : K̃ → C by setting f̃(z) = f(z) if z ∈ K, and f̃(z) = fa(z) if z ∈ Ka. We have
to show consistency of this definition. Suppose some z is in both Ka and Kb. Then
both fa and fb are equal to f on the triple intersection Ka ∩Kb ∩K, so by interior
uniqueness theorem 44 fa = fb on Ka ∩Kb, in particular fa(z) = fb(z).

Therefore, we extended f analytically to K̃. Now we have to show that K̃
actually contains a disc larger than K. This can be done by switching to finite
union by compactness of Γ, or by employing the notion of distance between sets.
Indeed, note that K̃ is open, so C \ K̃ is a closed set that does not intersect the

closed set K ∪ Γ, therefore (see Lemma 3) ε = dist(C \ K̃,K ∪ Γ) > 0. Therefore,

the disc K ′ = {|z − z0| < R + ε} is contained in K̃, and f extends analytically to
K ′, so K is not the disc of convergence. �

This theorem gives a practical way to find a radius of convergence of Taylor
series of elementary functions (and other functions given in a reasonable way): one
only needs to find distance from the center z0 to the closest singular point.

Example. f(z) = 1/ sin z, z0 = 6 + 7i. Finding radius of convergence through
explicit application of Cauchy–Hadamard theorem is unpleasant here, because the
Taylor series itself is unpleasant to find (not impossible though). Instead, we note
that f is analytic everywhere except for zeros of sin, i.e. the points zk = 2πk, and
takes infinite value at those points. So the radius of convergence of Taylor series is
the minimum of distances |z0 − zk|. In this case, it’s

√
(6− 2π)2 + 72.

11.2. Laurent series. Now we start looking into behavior of functions at points of
non-analyticity. One of important tools for that are Laurent series, that is, power
series where negative powers of the variable are allowed. General idea is that we
already developed all the machinery required to deal with such series when we
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were studying Taylor series. All we have to do is carefully apply those ideas and
techniques.

Theorem 49. Given a function series

A0 +A1(z − z0)−1 +A2(z − z0)−2 + . . . ,

let

r = lim sup
n→∞

n
√
|An|

and let γ be the circle γ : |z − z0| = r with interior I(γ) and exterior E(γ). Then
there are three possibilities:

(1) If r = 0, the series is absolutely convergent for all z ∈ C in the extended
complex plain, except for z = z0.

(2) If 0 < r < ∞, the series is absolutely convergent ∀z ∈ E(γ) and divergent
∀z ∈ I(γ).

(3) If r =∞, the series diverges ∀z 6=∞.

Proof. Substitute ζ = (z − z0)−1 and use Cauchy–Hadamard Theorem 38. �

Note that the convergence is uniform on compact subsets of E(γ) by Weierstrass
M -test, so by Weierstrass Theorem 39, the sum f(z) of the series above is analytic
in E(γ). Also, if r is finite, f(z) is analytic at ∞ because f(1/ζ) is analytic at 0.

Definition 16. Series
∞∑

n=−∞
an(z − z0)n

is called a Laurent series. By definition, such a series converges if and only if its
positive and negative parts

∞∑
n=0

an(z − z0)n,

∞∑
n=1

a−n(z − z0)−n

both converge. The sum of a Laurent series is the sum of sums of the two above
series.
Equivalently,

∞∑
n=−∞

an(z − z0)n = S

if and only if

lim
µ→∞
ν→∞

ν∑
n=−µ

an(z − z0)n = S.

Immediately from definition, Laurent series converges in an annulus (a ring-
shaped region) D : r < |z − z0| < R, where

1

R
= lim sup

n→∞

n
√
|an|, r = lim sup

n→∞

n
√
|a−n|.

Note that convergence is uniform on any compact subset of D (since convergence
of positive and negative part is uniform on compact subsets of D). From this point
on, assume D is not empty, that is r < R.
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Theorem 50. The sum of the Laurent series

f(z) =

∞∑
n=−∞

an(z − z0)n

is analytic on the annulus D : r < |z − z0| < R, and the coefficients ak are given
by formula

ak =
1

2πi

∫
γρ

f(z)

(z − z0)k+1
dz, k ∈ Z

where γρ is any circle |z − z0| = ρ, r < ρ < R.

Proof. Analyticity follows immediately from Weierstrass Theorem 39.
From the equality

f(z) =

∞∑
n=−∞

an(z − z0)n

we get

1

2πi

f(z)

(z − z0)k+1
=

∞∑
n=−∞

1

2πi
an(z − z0)n−k−1.

Since convergence of the series is uniform on γρ, it can be integrated term-wise.
Therefore,

1

2πi

∫
γρ

f(z)

(z − z0)k+1
=

∞∑
n=−∞

1

2πi
an

∫
γρ

(z − z0)n−k−1dz.

In the latter sum, only one term is nonzero, the one with n− k − 1 = −1. We get

1

2πi

∫
γρ

f(z)

(z − z0)k+1
=

1

2πi
ak · 2πi,

as required. �

Corollary 8. Let

f(z) =

∞∑
n=−∞

an(z − z0)n

in an annulus D, and

ϕ(z) =

∞∑
n=−∞

bn(z − z0)n

in an annulus ∆, and let f(z) = ϕ(z) for all z on a circle γ : |z − z0| = ρ that
belongs both to D and ∆. Then an = bn for every n ∈ Z.

Theorem 51. (Laurent series expansion) Let f(z) be an analytic function on the
annulus D : r < |z − z0| < R. Then there exits a Laurent series

f(z) =

∞∑
n=−∞

an(z − z0)n

converging to f(z) on D. Coefficients an are given by the formula

an =
1

2πi

∫
γρ

f(z)

(z − z0)n+1
dz ∀n ∈ Z,

where γρ is any circle γρ : |z − z0| = ρ with r < ρ < R.
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Proof. The proof is very similar to the proof of Thereom 37.
Pick numbers r′, R′ so that 0 < r < r′ < R′ < R and consider annulus D′ : 0 <

r′ < |z − z0| < R′. Let z1 ∈ D′. Then

f(z)

z − z1

is analytic in D \ {z1}. By Cauchy Integral Theorem for a system of contours, we
have

1

2πi

∫
γR′

f(z)

z − z1
dz =

1

2πi

∫
γr′

f(z)

z − z1
dz +

1

2πi

∫
Γ

f(z)

z − z1
dz,

where γR′ : |z − z0| = R′, γr′ : |z − z0| = r′, and Γ is a circle in D′ centered at
z1. Note that the latter integral is equal to f(z1) by Cauchy Integral Formula.
Therefore we have

f(z1) =
1

2πi

∫
γR′

f(z)

z − z1
dz +

1

2πi

∫
γr′

f(z)

z1 − z
dz = I1 + I2.

We will show that the first integral corresponds to the positive part of a Laurent
series, and the second one the the negative part.

Deal with I1 first. Note that

1

z − z1
=

1

(z − z0)− (z1 − z0)
=

1

z − z0

1

1− z1−z0
z−z0

=

=
1

z − z0

∞∑
n=0

(
z1 − z0

z − z0

)n
=

=

∞∑
n=0

(z1 − z0)n

(z − z0)n+1
.

Multiplying by 1
2πif(z), we get

1

2πi

f(z)

z − z1
=

∞∑
n=0

1

2πi

f(z)

(z − z0)n+1
(z1 − z0)n.

This series is uniformly convergent on γR′ (because |z − z0| < |z1 − z0|), so we can
integrate term by term along this circle. Have

I1 =
1

2πi

∫
γR′

f(z)

z − z1
dz =

∞∑
n=0

an(z1 − z0)n,

where

an =
1

2πi

∫
γR′

f(z)

(z − z0)n+1
dz.

For I2, we perform a similar calculation:

1

z1 − z
=

1

(z1 − z0)− (z − z0)
=

∞∑
n=0

(z − z0)n

(z1 − z0)n+1
,

and

1

2πi

f(z)

z1 − z
=

∞∑
n=0

1

2πi

f(z)

(z − z0)−n
(z1 − z0)−n−1 =

∞∑
n=1

1

2πi

f(z)

(z − z0)−n+1
(z1 − z0)−n
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is uniformly convergent on γr′ (because |z1 − z0| < |z − z0|). Therefore,

I2 =
1

2πi

∫
γr′

f(z)

z1 − z
dz =

∞∑
n=1

a−n(z1 − z0)−n,

where

a−n =
1

2πi

∫
γr′

f(z)

(z − z0)−n+1
dz.

Putting I1 and I2 together, we get

f(z1) =

∞∑
n=0

1

2πi
an(z1 − z0)n +

∞∑
n=1

1

2πi
a−n(z1 − z0)−n =

∞∑
n=−∞

an(z1 − z0)n.

Since z1 ∈ D is arbitrary, this is precisely what’s required. To prove the asserted
equality for an, it is only left to note that by Cauchy’s Integral Theorem, the inte-
grals representing an do not change their values if we change the path of integration
to γρ. �

Examples.

e
1
z =

∞∑
n=0

z−n

n!
, r = 0, R =∞.

1

z(z − 1)
= −1

z

1

1− z = −
∞∑

n=−1

zn, 0 < |z| < 1.

1

z(z − 1)
=

1

z2

1

1− 1
z

=
1

z2

∞∑
n=0

1

zn
=

−2∑
n=−∞

zn, 1 < |z| <∞.

Note that the latter two are examples of different Laurent series for the same
function 1

z(z−1) with the same center z0 = 0. However, there is no contradiction

with uniqueness of Laurent series (Corollary 8), because the corresponding annuli
do not intersect.

Corollary 9. (Cauchy’s inequalities) Let f be analytic in r < |z − z0| < R, and
r < ρ < R, and γρ : |z−z0| = ρ. Let M(ρ) = maxγρ |f(z)|. If an are the coefficients
of the Laurent series for f in the annulus r < |z − z0| < R, then

|an| ≤
M(ρ)

ρn

for all n ∈ Z.

Proof. This is a direct corollary of Theorem 51 and the formula for an in that
theorem. �

Another observation is that the reasoning of Section 11.1 applies to the inner
and outer radii of the annulus of convergence of a Laurent series. With natural
adjustments, the proof of Theorem 48 works to obtain the following statement.

Theorem 52. A function given by a Laurent series with annulus of convergence
0 < r < |z − z0| < R <∞ has at least one singular point on the circle |z − z0| = R
and at least one singular point on the circle |z − z0| = r.
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If f(z) =
∑

Z an(z − z0)n is a Laurent expansion of f , we say that
∑∞
n=0 an(z −

z0)n is the regular part of the Laurent series, and
∑∞
n=1 a−n(z−z0)−n is the principal

part of the Laurent series.
If for some function f it happens that f(z) =

∑
Z an(z − z0)n with 0 < |z −

z0| < R, we say that
∑

Z an(z − z0)n is a Laurent expansion of f at z0. If the
f(z) =

∑
Z anz

n in an annulus r < |z| < ∞, we say that
∑

Z anz
n is a Laurent

expansion of f at infinity. In the latter case
∑∞
n=1 cn(z− z0)n is the principal part

of Laurent series at infinity, and
∑∞
n=0 a−n(z−z0)−n is the regular part of Laurent

series at infinity.

Lecture 12. Isolated singular points. Meromorphic functions.
Residue theorem

April 19, 2017
Relevant Sections in Markushevich:

II.1.1–4, II.10.50, II.2.6

12.1. Isolated singular points. Observe that a point can be a singular point of
a function for different reasons. For example, observe that 0 is a singular point of√
z and of 1

z . In this section we look into a specific kind of singular points, defined
below.

Definition 17. We say that a point a is an isolated singular point of a function
f(z) if f(z) is not defined analytically at z = a, but is analytic in a punctured
neighborhood of a.

There is some awkwardness in terminology:

• According to this definition, an isolated singular point is not necessarily
a singular point in the sense of the preceding section, since f being not
defined at a is not the same as it being impossible to analytically extend f
to a. See also case R of the next definition.
• Another quirk of this term is that the term itself suggests that if a singular

point is not an isolated singular point, then there must be other singular
points close to it. This is not necessarily the case. For example, 0 is a
singular point, but not an isolated singular point, of any branch of

√
z,

since
√
z cannot be defined analytically on a punctured neighborhood of 0.

Since this terminology is established and widely used, we will have to put up with
this.

Definition 18. Suppose a is an isolated singular point of f . Expand f in a Laurent
series at z = a. There are three options:

R Principal part is zero: cn = 0 for n < 0. In this case a is called a removable
singular point.

P Principal part is nonzero but contains only finitely many nonzero terms:
cn = 0 for n < −N . In this case a is called a pole, and the largest power of
1/(z − a) is called the order of a pole. (In other words, order of a pole is a
number N such that cn = 0 for n < −N and c−N 6= 0.) A pole of order 1
is called simple.

E Principal part contains infinitely many nonzero terms. In this case we say
that a is an essential singular point.
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Remark. This definition, in particular, works for Laurent series at infinity, in
which case the principal part is the sum of positive powers (sign on n should be
reversed in the formulas above in that case).

Theorem 53. (Classification of isolated singular points) Let a be an isolated sin-
gular point of a function f(z). Consider the limit

lim
z→a

f(z).

Then there is the following relation between type of singularity at z = a and value
of this limit:

R ⇔ the limit is finite (or, equivalently, f(z) is bounded in a neighborhood of
point a),

P ⇔ the limit is infinite,
E ⇔ the limit does not exist.

Proof. Case R:
If f is bounded in a punctured neighborhood of a, (which is true if a finite limit
at a exists), then by Cauchy’s Inequalities (Corollary 9), |c−n| ≤ M/ρ−n. Taking
limit ρ→ 0, get that c−n = 0.

Other direction is obvious: if c−n = 0, then function is represented by a Taylor
series.

Case P:
Let limz→a f(z) =∞. Put g(z) = 1/f(z). Then limz→a g(z) = 0. By the previous
case, g is bounded in some punctured neighborhood of a, so g expands in a Taylor
series at a with first nonzero coefficient ck, k ≥ 1:

g(z) = ck(z − a)k + ck+1(z − a)k+1 + . . . = ck(z − a)k(1 + ϕ(z)),

where ϕ(a) = 0, so 1 + ϕ(z) 6= 0 on a neighborhood of a. Then 1
1+ϕ(z) is analytic

in a neighborhood of a, expands in a Taylor series at a, and is nonzero at a. Then

f(z) =
1

ck(z − a)k
· 1

1 + ϕ(z)
=

1

ck(z − a)k

∞∑
n=0

an(z − a)n =

∞∑
n=−k

an+k

ck
(z − a)n,

which exactly means that f has a pole of order k at a.

Other direction: f(z) =
∑k
n=1 c−n(z− a)−n +

∑∞
n=0 cn(z− a)n. The latter sum

is analytic, while the former sum →∞ as z → a.

Case E:
There are no other possibilities left for either direction of statement. �

Examples. All of the following (when the points are actually isolated singular)
can be established by either inspecting the corresponding limits, or by finding
principal part of Laurent series.

(1) f(z) = 1/z5 has an order 5 pole at 0 and is analytic (has removable sin-
gularity) at ∞ since f(1/z) = z5, which is analytic at 0 (or since ∞ is an
isolated singular point and the limit of 1

z5 at ∞ is finite).
(2) A polynomial of degree n has a pole of order n at infinity.
(3) e1/z has an essential singular point at 0 since this function is analytic on C

and

lim
x→0+

e1/x =∞, lim
x→0−

e1/x = 0.
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One can also readily see that by looking at Laurent series of e1/z.
(4) 1/ cos(1/z) does not have an isolated singular point at 0 since cos(1/z) has

zeros in any neighborhood of 0. Note that one can show that limz→0 does
not exist, but it does not imply that we have an essential point, because to
apply Theorem 53 we need to have an isolated singular point in the first
place.

At zk = 1/(π2 + πk), 1/ cos(1/z) has simple poles (why?). Finally, at
∞ (notice that 1/ cos(1/z) is analytic for |z| > 2/π) the singularity is
removable since limz→∞ 1/ cos(1/z) = 1/ cos 0 = 1.

(5) f(z) =
√
z does not have an isolated singular point at 0 since

√
z is not

defined in a punctured neighborhood of 0. Note that limz→0 f(z) = 0, but
it does not imply that we have a removable singularity, because to apply
Theorem 53 we need to have an isolated singular point in the first place.

(6) f(z) = 1/
√
z does not have an isolated singular point at 0 since

√
z is not

defined in a punctured neighborhood of 0. Note that limz→0 f(z) = ∞,
but it does not imply that we have a pole, because to apply Theorem 53 we
need to have an isolated singular point in the first place.

(7) tan z has simple poles at zeros of cos z, that is at z ∈ {π2 + πk}. Infin-
ity is not an isolated singular point since there are singular points in any
neighborhood of infinity.

For essential singular points there is a stronger statement.

Theorem 54. (Casorati–Weierstrass, or Sokhotski Theorem) If a is an essential
singular point of a function f , then for every A ∈ C there is a sequence zn → a
such that f(zn)→ A as n→∞.

Proof. Suppose this statement fails for A =∞. Then f is bounded in a neighbor-
hood of a, so a is in fact a removable singular point.

Suppose the statement fails for a finite A, which means that there is a neigh-
borhood B of A such that values f(z) miss B for all z in any, however small,
neighborhood of a. Therefore a function g(z) = 1

f(z)−A is analytic in a neighbor-

hood of a, so a is a removable singular point for g. But then since f(z) = A+ 1
g(z) ,

a is either removable singular point of f , or a pole of f . �

Remark. In fact, even stronger statement is true (Picard’s Theorem): in any
neighborhood of an essential singular point, f must take all values except, perhaps,
one.

Example. Consider the function f(z) = sin 1
z . This function has an essential

singular point at 0. Given an A ∈ C, find w0 such that sin(w0) = A (sin is
surjective). Then for zk = 1/(w0 + 2πk), sin(1/zk) = A. Therefore, given an
arbitrary A ∈ C we found a sequence zk → 0 s.t. the sequence of values of f not
only approaches A, but is actually constant and equal to A. Also note that by
considering g(z) = sin z we can organize the same behavior at ∞.

12.2. Meromorphic functions. Note that if a function has a pole at point a, it
is relatively “tame” on a neighborhood of that point, since in such case

f(z) = c−k(z − a)−k + . . .+ c−1(z − a)−1 + c0 + c1(z − a) + . . . = (z − a)−kϕ(z),

where ϕ is analytic at a. With that in mind, we give the following definition.
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Definition 19. Let G be a domain. If a function f is analytic in G except a finite
number of points, all of which are poles or removable singular points, we say that
f is meromorphic in G.

Example 1. Any rational function is meromorphic on any domain. (Recall that
rational function is a ratio of two polynomials.)

Example 2. The function f(z) = 1/ sin z has simple (order 1) poles at zeros of
sin z, so f is meromorphic on any bounded domain, but not on C (infinitely many
poles) or C (infinitely many poles, and ∞ is a singular point that’s not a pole, in
fact, not an isolated singularity).

Remark. Sometimes (in fact, in most textbooks) the requirement that there are
only finitely many poles is omitted in the definition of meromorphic function. The
resulting notion is close since by Uniqueness Theorem any compact subset of the
domain will contain only finitely many poles. Within such terminology, the above
function 1/ sin z is meromorphic on C but not on C.

Note that if G = C, then the words “finite number” can be omitted from the
definition, because if a function has infinitely many poles, then by compactness of
C the set of poles has a limit point in C, making it not a point of analyticity and
not a pole.

Theorem 55. Suppose f is an entire function. Then infinity is a removable sin-
gular point for f if and only if f = const, and is a pole of order n if and only if f
is a polynomial of degree n.

Proof. If ∞ is a removable singularity, then by classification theorem f is bounded
and therefore f is constant by Liouville’s Theorem. Other direction is clear.

If∞ is a pole of degree n, that means the principal part of the Laurent expansion
at infinity is a polynomial of degree n. Since f is analytic, there are no negative
powers in Laurent expansion. �

With the above theorem in mind, we can say that Liouville’s theorem states that
a function analytic on C must be constant. Being meromorphic on C also turns out
to be a strong constraint, as we see in the following statement.

Theorem 56. A function f(z) is meromorphic in C if and only if f is a rational
function.

Proof. Suppose f is meromorphic in C and a1, a2, . . . , an are the poles of f . Expand
f in a Laurent series at each ak. At each ak, the principal part of Laurent series is

a polynomial Pk

(
1

z−ak

)
. Then the function

f(z)−
n∑
k=1

Pk

(
1

z − ak

)
is entire, and therefore is a polynomial P (z) by the previous theorem, so

(16) f(z) = P (z) +

n∑
k=1

Pk

(
1

z − ak

)
,

which is a rational function. �

Remark. The polynomial P (z) above, up to a constant, is just the principal
part of the Laurent series of f at ∞.
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Remark. Observe that the equation 16 is nothing other than decomposition of
f into partial fractions.

Theorem 57. Any bijective meromorphic4 mapping f : C→ C is a Möbius trans-
formation.

Proof. We have two cases, whether ∞ = f−1(∞) or not.
Case 1. ∞ = f−1(∞). This means that f is analytic on C and has a pole

at ∞. By Theorem 55, f is polynomial. By Fundamental Theorem of Algebra
(Corollary 4), the equation f(z) = z0, where f ′(z0) 6= 0, has deg f distinct roots, so
in order for f to be injective deg f must be 1, i.e. f(z) = az+ b, which is a Möbius
transformation.

Case 2. ∞ 6= f−1(∞) = A. This means that f has a removable singularity
at ∞ (because by bijectivity, f(∞) must be finite), and a pole at A (because
f(A) = ∞, so it satisfies case P of Classification theorem 53). Therefore, f is a
polynomial of 1

z−A (see proof of Theorem 56). Same as above, this polynomial

must be of degree 1 to allow injectivity, so f(z) = a
z−A + b, which is a Möbius

transformation. �

12.3. Residue theorem. Suppose a function f is analytic in G except for finitely
many points a1, . . . , an. Suppose a closed simple rectifiable curve γ is such that
γ ∪ I(γ) ⊆ G, and a1, . . . , an ∈ I(γ). Then the points ak “get in the way” of
applying Cauchy Theorem to

∫
γ
f . But we can put a small circle γk around each

point γk, then by Cauchy Theorem for a system of contours we have∫
γ

f(z)dz =

n∑
k=1

∫
γk

f(z)dz.

Note that if
∑

Z cn(z−ak)n is a Laurent expansion of f at ak, then we can integrate
f termwise: ∫

γk

f(z)dz = 2πic−1.

Definition 20. The Laurent coefficient c−1 in the Laurent expansion of f at an
isolated singular point a is called the residue of a function f at the point a, denoted
res
a
f .

If a is a regular (or removable singular) point of f , res
a
f = 0.

Theorem 58. (Residue Theorem) Suppose G is a domain, γ is a closed simple
rectifiable curve γ is such that γ ∪ I(γ) ⊆ G. Suppose f is analytic in G, except for
points a1, a2, . . . , an ∈ I(γ). Then∫

γ

f(z)dz = 2πi
∑
a∈I(γ)

res
a
f = 2πi

n∑
k=1

res
ak
f.

Proof. By Cauchy Integral Theorem for a system of contours, switch to integrating
along small circles γk around the points ak, then use the formula

∫
γk
f(z)dz =

2πic−1 above, and the definition of a residue. �

4If we view C as a Riemann sphere, we can say “analytic” instead of meromorphic, which
sounds prettier.
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Remark. The statement also works for a system of contours.
Remark. If we use stronger version of Cauchy’s Theorem (theorem 16), we can

generalize this statement to γ = ∂G, where G is a bounded domain and f analytic
in G and continuous in G, except for finite number of points.

Lecture 13. Residues and their applications. Elementary
multi-valued functions

April 26, 2017
Relevant Sections in Markushevich:

II.2.6-7, I.11.53-54,56.

13.1. Computing residues.

(1) If a is a pole of order 1, then

f(z) = c−1(z − a)−1 + c0 + c1(z − a) + . . .

so
res
a
f = c−1 = lim

z→a
(z − a)f(z).

In particular, if f(z) = g(z)
h(z) , where h has a simple zero at z = a, that is

h(a) = 0, h′(a) 6= 0, then

res
a
f = lim

z→a
(z − a)f(z) = lim

z→a

(z − a)g(z)

h(z)
=

= lim
z→a

g(z) + (z − a)g′(z)

h′(z)
=

=
g(a)

h′(a)

by L’Hospital’s rule (follows by writing out Taylor series in z − a in the
numerator and denominator).

Example. Keeping the above in mind sometime saves time:

res
i

1

z2016 − 1
= lim
z→i

z − i
z2016 − 1

= lim
z→i

(z − i)′
(z2016 − 1)′

= lim
z→i

1

2016z2015
=

i

2016
.

(2) If a is a pole of order n, then

f(z) =
c−n

(z − a)n
+ . . .+

c−1

z − a + c0 + c1(z − a) + . . . ,

so

(z − a)nf(z) = c−n + . . .+ c−1(z − a)n−1 + c0(z − a)n + . . . ,

and
dn−1

dzn−1
(f(z)(z − a)n) = (n− 1)!c−1 + . . .

thefore

res
a
f = c−1 =

1

(n− 1)!
lim
z→a

dn−1

dzn−1
(f(z)(z − a)n).

(3) If a is an essential singular point, then to find a residue at a, one needs to
expand f in a Laurent series and find c−1 explicitely, or to integrate along
a closed curve encircling a (which defeats the purpose of notion of residue,
but still).
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Example.

sin

(
1

z

)
=

1

z
− 1

3!

1

z3
+ . . . ,

so

res
0

sin

(
1

z

)
= 1.

13.2. Using residues to compute integrals. Residues, of course, can be em-
ployed straightforwardly to compute integrals.

Example.

res
i

sin z

z2 + 1
=

sin i

2i
, res

−i

sin z

z2 + 1
=

sin(−i)
2(−i) =

sin i

2i
,

so ∫
|z|=2

sin z

z2 + 1
dz = 2πi

(
res
i

sin z

z2 + 1
+ res
−i

sin z

z2 + 1

)
= 2π sin i.

13.2.1. Using residues to compute real integrals. More interestingly, residues can
be used to find real line integrals. There are quite a few classes of integrals that
can be computed by certain standard tricks. They are best found in undergraduate
complex analysis books. Below we list just a few of examples, without going too
much into details.

(1) Suppose P and Q are polynomials such that degP ≤ degQ−2, and Q(x) 6=
0 for x ∈ R. The the following improper integral converges:

I =

∫ ∞
−∞

P (x)

Q(x)
dx.

We can compute this integral using residue theorem. Consider contour LR
that consists of a segment of real line [−R,R] and upper semicircle γR of
radius R. Then∫

LR

P (z)

Q(z)
dz =

∫ R

−R

P (z)

Q(z)
dz +

∫
γR

P (z)

Q(z)
dz.

Note that the second integral goes to 0 as R→∞:∣∣∣∣∫
γR

P (z)

Q(z)
dz

∣∣∣∣ ≤M · 1

R2
· πR→ 0.

Therefore, taking R → ∞ (in particular, semicircle of radius R then con-
tains all zeros of Q in upper half-plane), we have

I = 2πi
∑

Im ak>0

res
ak

P

Q
,

where ak are all zeros of Q, so the summation is over all zeros of Q in the
upper halfplane.

(2) Integrals of the form∫ ∞
−∞

P (x)

Q(x)
cosαxdx,

∫ ∞
−∞

P (x)

Q(x)
sinαxdx,

where degP ≤ degQ− 1, Q(x) 6= 0 on R, and α > 0, can be computed by
considering integral of the function

f(z) =
P (z)

Q(z)
eiαz
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along the same contour LR as in the previous item:∫
LR

P (z)

Q(z)
eiαzdz =

∫ R

−R

P (z)

Q(z)
eiαzdz +

∫
γR

P (z)

Q(z)
eiαzdz.

The integral along γR goes to 0 (R → ∞), but it is not as immediate
as in the previous case. In fact, it’s a whole named statement, Jordan’s
Lemma. We don’t prove it or even state it here for lack of time. Taking it
for granted, we can take real and imaginary part of the limit (R → ∞) of
the above equality to see that∫ ∞

−∞

P (x)

Q(x)
cosαxdx = −2π

∑
Im ak>0

Im(res
ak
f)

and ∫ ∞
−∞

P (x)

Q(x)
sinαxdx = 2π

∑
Im ak>0

Re(res
ak
f),

where f is defined above.
(3) We will properly define the power function zα later in this lecture. For

now, let’s take it for granted. Then we can compute the integral∫ ∞
0

xαP (x)dx

Q(x)
,

where 0 < α < 1, degP ≤ degQ − 2, Q(x) 6= 0 for x > 0, and Q(x) has a
zero of order at most 1 at the origin (order of zero will be also introduced
later in this lecture).

Consider the function f(z) = zαP (z)
Q(z) and the “incised circle” contour

that goes from εi to R+ εi in a horizontal straight line, then makes almost
a full circle from R+ εi to R− εi, then straight line to −εi, then clockwise
semicircle back to εi. Taking limit as ε→ 0 and R→∞, we can see that∫ ∞

0

xαP (x)dx

Q(x)
=

2πi

1− eiα2π

∑
ak 6=0

res
ak
f,

where f is defined above, and the sum is taken over all residues at nonzero
poles.

(4) We can also compute integrals of the form∫ 2π

0

F (cos θ, sin θ)dθ,

where F is a reasonable function (for example, any rational function). To
do that, we notice that if z = eiθ then cos θ = 1

2 (z + 1
z ), sin θ = 1

2i (z − 1
z ),

and dz = ieiθdθ, so dθ = dz
iz . Finally, notice that, for 0 ≤ θ ≤ 2π, the point

z = eiθ traverses the unit circle γ, so we have∫ 2π

0

F (cos θ, sin θ)dθ =

∫
γ

F
(

1
2 (z + 1

z ), 1
2i (z − 1

z )
) dz
iz

= 2πi
∑
|ak|<1

res
ak
f,

where f(z) =
F
(

1
2 (z+

1
z ),

1
2i (z−

1
z )

)
iz , and the summation is over all residues

inside the unit circle.
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13.2.2. Using residues to find sum of series. Another amusing application of residue
calculus is finding sums like

∞∑
n=1

1

n2
= 1 +

1

22
+

1

32
+ . . . =

π2

6
.

The idea is to organize a function with residues 1
n2 and look into its integral along

an appropriate contour. This is done in detail in Homework.

13.3. Multiplicity of zeros and poles. Relation between number of zeros
and number of poles. There is a notion “twin” to the order of a pole.

Definition 21. Suppose f is analytic at a. Then we say that a is a zero of order
k if f(a) = f ′(a) = . . . = f (k−1)(a) = 0 and f (k)(a) 6= 0. Equivalently, f(z) =
(z − a)kϕ(z) with ϕ analytic at a and ϕ(a) 6= 0. If f = 0, we say that multiplicity
is infinite.

Recall that a is a pole of order k if f(z) = ϕ(z)
(z−a)k

, where ϕ is analytic at a (recall

that this means “analytic on a neighborhood of a”) and ϕ(a) 6= 0.
In other words, if a is a regular point or a pole of f , we can find a number m

such that f(z) = (z − a)mϕ(z), where ϕ is analytic at a and ϕ(a) 6= 0. Then the
number orda f = m is called order of point a (with respect to a function f).

It is easy to see that orda(fg) = orda f + orda g.
Suppose f is analytic in a neighborhood of a point a, and a is a regular point or

a pole of f .

Lemma 7. If a is a regular point or a pole of f , then

res
a

(
f ′

f

)
= ordaf.

Proof. Let n = ordaf . Then f(z) = (z − a)nϕ(z), where ϕ(z) is analytic at a and
ϕ(a) 6= 0. Then f ′(z) = n(z − a)(n−1)ϕ(z) + (z − a)nϕ′(z), so

f ′(z)

f(z)
=
n(z − a)n−1ϕ(z) + (z − a)nϕ′(z)

(z − a)nϕ(z)
=

n

z − a +
ϕ′(z)

ϕ(z)
.

Function ϕ′(z)
ϕ(z) is analytic at a, so res

a

f ′

f = c−1 = n. �

Theorem 59. Let G be a domain, γ a simple rectifiable closed curve contained in
G together with its interior, γ ∪ I(γ) ⊆ G, and let a function f be meromorphic in
G without zeros or poles on γ. Then

1

2πi

∫
γ

f ′(z)

f(z)
dz = N − P,

where N is the number of zeros of f in I(γ) and P is the number of poles of f in
I(γ) (counting multiplicity).

Proof. By Residue Theorem 58, we get that

1

2πi

∫
γ

f ′(z)

f(z)
dz =

∑
ak∈I(γ)

res
ak

f ′

f
.

By the Lemma above, the latter sum is just N − P , since a zero of multiplicity n
contributes n to this sum, and a pole of multiplicity n contributes −n. �
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Remark. Just like Residue theorem, this also holds for γ that is a boundary of
a bounded domain, or for a γ that is a system of contours.

The expression f ′

f is called a logarithmic derivative of f , since “(ln f(z))′ = f ′(z)
f(z) .”

This gives us another approach to compute the integral in the above theorem,
by using the Fundamental Theorem of Calculus. However, that will involve the
multivalued function Ln, so to proceed with that plan we first need to properly
explain how to deal with multivalued functions.

13.4. Elementary multi-valued functions. This sections is somewhat of a crutch
to avoid dealing with the general construction. But we actually do not need arbi-
trary multi-valued functions here, but rather just a few of them.

Suppose G is a domain in C, and f : G→ C is a function for which we want to
consider an inverse f−1 : f(G) → G. The problem is that f is not assumed to be
injective, so f−1 may not be defined a (single-valued) function.

Definition 22. A (single-valued) function F : A→ B is a subset F ⊆ A×B such
that

(1) For any a ∈ A, there is b ∈ B s.t. (a, b) ∈ F . Notation: F (a) = b.
(2) For any a ∈ A, if (a, b1) ∈ F and (a, b2) ∈ F , then b1 = b2 (“vertical line

test”).

A multi-valued function F : A→ B is a subset F ⊆ A×B such that

(1) For any a ∈ A, there is b ∈ B s.t. (a, b) ∈ F . Notation: F (a) = b.

Other way to give the same definition is to say that a multi-valued function
F : A → B is a (single-valued) function from A to the set of nonempty subsets
of B.

Return now to our case, f : G → C. If function f is not injective, the function
f−1 is multi-valued. Below we construct so-called single-valued branches of f−1.

Suppose (!) that there are countably many subdomains G1, G2, . . . of G so that

• Gk’s are disjoint, i.e. Gk ∩Gk′ = ∅ for k 6= k′,
• restriction f |Gk is injective for each k,
• every point z ∈ G is either a point of some Gk, or is a point of common

boundary of at least two distinct Gk’s: z ∈ Gk or z ∈ ∂Gk ∩ ∂Gk′ , k 6= k′.

Let E denote the union of the points of G that lie in common boundary of at least
two subdomains Gk. Then G decomposes in a disjoint union:

G = E ∪G1 ∪G2 ∪ . . .

Then, since f is injective on Gk, it has a single-valued inverse (f |Gk)−1 : f(Gk)→
Gk ⊆ G, which we denote by f−1

k . Each function f−1
k is called a single-valued

branch of f−1.
Note that there is no guarantee that such decomposition exists. One can prove

that it exists if f is analytic, but that’s outside this course. We, however, are only
going to need this for few specific functions, so we need not worry about the general
case.

Example. Consider f(z) = zn, n a positive integer. Then one can easily give an
appropriate decomposition, for example, one shown in the Figure 4: the full angle
at the origin is divided into n equal angles.
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G1

G2

Gn

E

f(G1)

f(E)

zn

Figure 4. On the left, the bolded part is the set E. On the right,
f(Gk) = C \ R≥0.

In this example, Gk = {z ∈ C | 2π(k − 1)/n < arg z < 2πk/n}. For instance,
taking k = 1 we get an injective function zn|G1

whose inverse n
√
z is defined on the

domain C \ R≥0 and valued in G1 = {z ∈ C | 0 < arg z < 2π/n}.
Note that the domain f(Gk) in the Fig. 4 is not all that good: it misses all non-

negative reals. So the branches of nth root that correspond to the decomposition
in that figure are not defined on non-negative real numbers, which is really incon-
venient. But this is not actually a problem, because we can just pick a different
decomposition G = E ∪G1 ∪G2 ∪ . . . (see Fig. 5)

G1

G2

Gn

E

f(G1)

f(E)

zn

Figure 5. On the left, the bolded part is the set E. On the right,
f(Gk) = C \ f(E).

A decomposition G = E ∪ G1 ∪ G2 ∪ . . . is often implied when dealing with
multi-valued functions. For example, typical phrase in a book would be “Let

√
x

be a branch of square root on the domain D = {Re z > 0} such that
√

4 = 2”.
This means that the decomposition is picked so that f(Gk) contains the domain
D (i.e. f(E) misses D), and then a branch is picked so that the corresponding
Gk contains the point 2. Sometimes mention of a specific domain D is omitted; in
such case, it is implied that D is a neighborhood of the point (in the example, a
neighborhood of the point 4). There is ambiguity in the choice of the decomposition
G = E ∪ G1 ∪ G2 ∪ . . . in either case, but as long as image of some Gk contains
D, it gives the same values of the single-valued branch on D. Indeed, given two
decompositions G = E ∪ G1 ∪ G2 ∪ . . . = E′ ∪ G′1 ∪ G′2 ∪ . . ., if D ⊆ f(G1) and
D ⊆ f(G′1), then f−1|G1

and f−1|G′1 , while being different functions, take the same
values on D because those values belong both to G1 and G′1.
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13.4.1. The nth root function. Let f(z) = zn. Then split C into pieces

Gk = {z ∈ C | α0 + 2π(k − 1)/n < arg z < α0 + 2πk/n}, k = 1, 2, . . . , n,

with arbitrary α0. This gives n single-valued branches of the nth root function,
each defined on the set C \ {Arg z = nα0}.

13.4.2. The complex logarithm function. Let f = ez. Since ez is 2πi-periodic, we
can cup up the complex plane into countably many horizontal strips of the hight
2π:

Gk = {z ∈ C | y0 + 2πk < Im z < y0 + 2π(k + 1)}, k ∈ Z.
On each Gk the exponential is injective. We get countably many single-valued
branches of the complex logarithm, denoted Ln z, each defined on the set C \
exp({x+ iy0}) = C \ {Arg z = y0}.

13.4.3. The exponential function with arbitrary base. Now that we have Ln, we can
define az for arbitrary nonzero a ∈ C. Just put

az = ez Ln a.

One can easily see that each branch of this function satisfies all the usual properties
of the exponential function.
Exercise. Check that z1/n defined like that is the same function as n

√
z defined

in the Subsection 13.4.1

Note that all our machinery applies to single-valued branches of these functions.
In particular, they all are analytic on the corresponding domains, and one can
easily find their derivatives, Taylor series, etc, using usual calculus techniques. For
example, one can see that the Taylor series are as follows.

Ln(1 + z) = z − z2/2 + z3/3− z4/4 + z5/5− z6/6 + . . . ,

for a branch s.t. Ln(1) = 0. Radius of convergence is 1 (exercise: why?).

(1 + z)α = 1 + αz + α(α−1)
2 z2 + α(α−1)(α−2)

6 z3 + α(α−1)(α−2)(α−3)
24 z4 + . . . ,

or using
(
α
k

)
= α(α−1)···(α−k+1)

k! notation,

(1 + z)α =

∞∑
k=0

(
α

k

)
zk,

for a branch s.t. 1α = 1. Radius of convergence is ∞ if α is a non-negative integer,
or 1 otherwise (exercise: why?).

13.4.4. Defining f−1 on a curve. We will need one more particular thing: now
we can define values of, for example, f−1(z) = Ln z along a given curve. Indeed,
let γ : [a, b] → C be a curve that does not pass through 0. Then we can find a
continuous image of γ under f−1 as follows. Pick arbitrary initial value of f−1 at
γ(a). Then partition [a, b] into intervals [aj , aj+1] so that the corresponding pieces
γj : [aj , aj+1] → C stay inside some f(Gk), except for maybe γ(aj) ∈ f(E) and
γ(aj+1) ∈ f(E). Assume that each point γ(aj) is either a point of some f(Gk),
or a point of common boundary of exactly two f(Gk)’s (as it is the case with Ln).
Then as we pass through the points γ(aj) we have a unique choice for a branch of
f−1 on γj+1 given such choice for γj (see Fig. 6).
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f(E)

Ln z

γ(a = a0)

γ(a1)

γ(a2)

γ(b = a3)
Ln(γ(a))

Ln(γ(a1))

Ln(γ(a2))

Ln(γ(b))

Re

ImIm

Re

Figure 6. Starting with an arbitrary value of Ln at γ(a), we can
“lift” continuously the whole curve.

Note that even if the curve γ is closed (γ(a) = γ(b)), it does not guarantee
that f−1(γ(a)) = f−1(γ(b)). The value f−1(γ(b))− f−1(γ(a)) is the net change of
g = f−1 (in our example, of Ln) along γ, denoted

∆γ(g) = g(γ(b))− g(γ(a)).

Lecture 14. Argument principle and Rouché theorem. Bonus track

May 3, 2017
Relevant Section in Markushevich:

II.2.7.

14.1. Argument Principle, Rouché Theorem, and Open mapping theo-
rem. In Theorem 59 above we got the formula

1

2πi

∫
γ

f ′(z)

f(z)
dz = N − P.

Now that we know what complex logarithm is, we can say that f ′/f = (Ln f)′ on
each specific branch of Ln. So we cut up the curve γ as in Subsection 13.4.4 and
on each piece γk with endpoints αk, βk we have∫

γk

f ′(z)

f(z)
dz = Ln f(βk)− Ln f(αk) = ∆γk Ln f,

where ∆lg stands for a change of value of a function g along a curve l, as defined
in Subsection 13.4.4. Now sum up the corresponding formulas for all k. We get∫

γ

f ′(z)

f(z)
dz = ∆γ Ln f.

Lucky for us, Ln is a relatively simple function. Inspecting the equality ex+iy =
ex(cos y + i sin y), we get that

Ln z = ln |z|+ iArg z.

Function ln |z| is single-valued, so ∆γ ln |f | = 0, therefore

∆γ Ln f = i∆γ(Arg f).

To sum up,
∫
γ
f ′(z)
f(z) dz is i times the angle that f travels while z goes along γ.

Notice that if γ is a closed curve then ∆γ Ln f is a multiple of 2πi (since values
of Ln at the same point can only differ by 2πin). The integer number 1

2πi∆γ Ln f =
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1
2π∆γ(Arg f) is called the index of γ w.r.t. 0 (or winding number of γ w.r.t. 0).
Notation: ind0(γ). In plain terms, this is the number of loops (full turns) that γ
makes around 0.

Theorem 60. (Argument Principle) Let G be a domain, γ a simple rectifiable
closed curve contained in G together with its interior, γ ∪ I(γ) ⊆ G. Let f a
function meromorphic on G, without zeros or poles on γ. Let N be the number of
zeros of f in I(γ) and P be the number of poles of f in I(γ) (counting multiplicity).
Then

N − P =
1

2π
∆γArg f = ind0(f(γ)).

Proof. By Theorem 59, we know that

N − P =
1

2πi

∫
γ

f ′(z)

f(z)
dz =

1

2π
∆γ(Arg f).

The latter is, by definition, equal to ind0(f(γ)). �

By Nf we denote the number of zeros of a function f (counting multiplicity).

Theorem 61. (Rouché Theorem) Let G be a domain, γ a simple rectifiable closed
curve contained in G together with its interior, γ ∪ I(γ) ⊆ G. Let functions F, g
be analytic in G, and let |F (z)| > |g(z)| for all z ∈ γ. Then F + g has the same
number of zeros in I(γ) as F does:

NF+g = NF

Proof. Since |F (z)| > |g(z)| on γ, it is also > 0, so F does not have any zeros on
γ. Since |g| < |F | on γ, neither does F , so we can apply Argument Principle:

NF+g =
1

2π
∆γArg (F + g) =

=
1

2π
∆γArg

(
F
(

1 +
g

F

))
=

=
1

2π
∆γArgF +

1

2π
∆γArg

(
1 +

g

F

)
.

Note that ∆γArg
(
1 + g

F

)
= 0 since

∣∣ g
F

∣∣ < 1. Therefore

NF+g =
1

2π
∆γArgF = NF .

�

Remark. Note that we haven’t really used analyticity of f other than to apply Ar-
gument Principle. Therefore, the same statement is true for meromorphic functions
and the value N − P , that is NF+g − PF+g = NF − PF .
Remark. Another observation is that asking |F | > |g| is a bit more than it is
necessary for the proof to work. Indeed, we only need 1 + g

F to not go around the
origin, while we condition of the theorem provides a stronger restriction: that 1+ g

F
stays in the disc |z − 1| < 1. The same proof will work if we ask that the value

1+ g
F = F+g

F is simply never negative. Note that a ratio of two complex numbers is
a negative real if and only if their arguments differ by π. In our case it just means
that we want to forbid the equality |F + g|+ |F | = |g| (see Fig. 7. Since by triangle
inequality |F + g| + |F | ≥ |g|, the requirement becomes |F + g| + |F | > |g| at all
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F

F + g

g

Figure 7. Forbidden sum in Rouché theorem.

points of γ. This is easier to satisfy than |F | > |g| because of the extra term |F +g|
in the left hand side.

Example 1. Find number of roots of the equation

z2017 + 7z8 − ez + 3i = 0

of absolute value less than 1.
Put F (z) = 7z8, g(z) = z2017 − ez + 3i, γ : |z| = 1. Then |F (z)| = 7 on γ, and

|g(z)| ≤ 1 + e+ 3 < 7 on γ. By Rouché Theorem, the function z2017 + 7z8− ez + 3i
has the same number of zeros inside γ as F (z) = 7z8, i.e. 8 zeros.
Example 2. Find number of roots of the equation

z2017 + 7z8 − ez + 3i = 0

of absolute value less than 2.
Put F (z) = z2017, g(z) = 7z8− ez + 3i, γ : |z| = 2. Then |F (z)| = 22017 > 10000

on γ, and |g(z)| ≤ 7 · 28 + e2 + 3 < 10000 on γ. By Rouché Theorem, the function
z2017 + 7z8 − ez + 3i has the same number of zeros inside γ as F (z) = z2017, i.e.
2017 zeros.

Observe also that by the preceding example, we also know that precisely 2017−
8 = 2009 of those zeros are in the annulus 1 < |z| < 2.
Example 3. Find number of roots of the same equation

z6 − 4z3 + 7z2 − 3 = 0

of absolute value less than 2.
Put F (z) = z6, g(z) = −4z3 + 7z2 − 1, γ : |z| = 2. Then |F (z)| = 26 = 64

on γ, and |g(z)| ≤ 32 + 28 + 3 < 64 on γ. By Rouché Theorem, the function
z6− 4z3 + 7z2− 3 has the same number of zeros inside γ as F (z) = z6, i.e. 6 zeros.

Note that Example 3 can be done without the Rouché theorem, because by a
similar estimate, the term z2017 dominates other terms on the annulus |z| ≥ 2, not
just on the circle |z| = 2. Since the function is a degree 6 polynomial, we know
that there are 6 zeros in C. Since there are none in the annulus |z| ≥ 2, it follows
that all 6 are in the disk |z| < 2..
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Rouché theorem also gives an easy way to prove the Fundamental Theorem of
Algebra. Indeed, for a polynomial

f(z) = zn + an−1z
n−1 + . . .+ a1z + a0, n ≥ 1,

set
F (z) = zn and g(z) = an−1z

n−1 + . . .+ a1z + a0.

Since g(z) is of degree n− 1 < n, for R large enough we have that |F (z)| > |g(z)|
provided |z| = R. Therefore, f(z) has as many zeros in the disc |z| < R as
F (z) = zn does, that is n zeros.

Yet another corollary of Roucbé theorem is the following statement.

Theorem 62. (Open mapping theorem, open mapping principle) Analytic non-
constant function defines an open mapping, i.e. if G is a domain and f 6= const is
analytic on G, then f(G) is also a domain.

Proof. f(G) is connected since G is connected and f is continuous. So we only
need to show that f(G) is open. Suppose b ∈ f(G), that is there is an a ∈ G s.t.
f(a) = b. Since f 6= 0, then by Interior Uniqueness Theorem 44, there is a closed
neighborhood Bε(a) such that f(z) 6= b for any z ∈ Bε(a), z 6= a. (Otherwise we
would be able to construct a sequence zn → a such that f(zn) = b and that would
mean that f ≡ b). Put

δ = min
|z−a|=ε

|f(z)− b| > 0.

Consider an open circle of radius δ centered at b. Suppose a point w lies in this
circle. Show that w has a preimage in G. Indeed, write

f(z)− w = (f(z)− b) + (b− w).

Put F (z) = f(z)− b, g(z) = b−w in Rouché Theorem. Then |g| < δ (because w is
inside a circle of radius δ), while |F | ≥ δ for |z−a| = ε. Then NF+g = NF . We know
that f(z)− b has at least one zero, so NF+g is also ≥ 1, which precisely means that
w has a preimage. We showed that f(G), together with a point b ∈ f(G), contains
its open neighborhood of radius δ > 0. Therefore, f(G) is open. �

Open mapping theorem is quite a strong statement. For example, Maximum
Modulus Principle follows immediately from open mapping theorem.

14.2. Bonus track: Riemann zeta-function and the statement of Riemann
Hypothesis. This section is not included in Final.

In the Homework Assignment 13, we computed the sums
∞∑
k=0

1

k2
and

∞∑
k=0

1

k4
.

One can define the same sum for an arbitrary exponent s ∈ C:

ζ(s) =

∞∑
k=0

1

ks
,

where we can define ks = es ln k. Note that this series does not always converge. In
fact, we can only guarantee that it converges if Re s > 1. Indeed, if Re s ≥ σ0 > 1,
then the series is dominated by

∞∑
k=0

1

kσ0
,
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so by Weierstrass M -test (Theorem 34) the series uniformly converges in the region
Re s ≥ σ0 for any σ0 > 1. Further, by Weierstrass theorem 39, the sum is analytic
on the domain Re s > 1.

The function ζ(s) defined above is called Riemann zeta-function. We can now
“state” the famous Riemann Hypothesis.

Riemann Hypothesis. All zeros of Riemann zeta-function ζ(s) in the right
half-plane Re s > 0 are located on the vertical line Re s = 1

2 .
(See also restatement in the end of this section.)

Of course, for this to make sense we need to define ζ(s) on a region that at least
contains that line. Below we extend ζ to the domain Re s > 0.

One can view the following lemma as a discrete analogue of integration by parts.

Lemma 8. (Abel transformation) Let (an) be a sequence in C, x ∈ R, x > 1. Put

A(x) =
∑
n≤x

an.

Let g(t) : [1,+∞)→ C be differentiable. Then∑
n≤x

ang(n) = A(x)g(x)−
∫ x

1

A(t)g′(t)dt.

Proof. Denote B(x) =
∑
n≤x ang(n).

Let x = N ∈ Z first. We have

B(N) =

N∑
n=1

ang(n) =

N∑
n=1

(A(n)−A(n− 1))g(n) =

=

N∑
n=1

A(n)g(n)−
N∑
n=1

A(n− 1)g(n) =

=

N∑
n=1

A(n)g(n)−
N−1∑
n=1

A(n)g(n+ 1) =

= A(N)g(N)−
N−1∑
n=1

A(n)(g(n+ 1)− g(n)),

since A(0) = 0. Then we get

B(N) = A(N)g(N)−
N−1∑
n=1

A(n)(g(n+ 1)− g(n)) =

= A(N)g(N)−
N−1∑
n=1

A(n)

∫ n+1

n

g′(t)dt =

= A(N)g(N)−
∫ N

1

A(t)g′(t)dt,

so the case x = N is done. Now for arbitrary x > 1, put x = N + {x}, where
{x} = x − [x] is the fractional part of x, and plug it in the required equality
(exercise). �
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Note that if we additionally know that A(x)g(x) → 0 as x → ∞, then by
Lemma 8 we get

(17)

∞∑
n=1

ang(n) = −
∫ ∞

1

A(t)g′(t)dt,

where the latter is an improper Riemann integral.
Now apply this to the sum that defines zeta-function: put an = 1 and g(x) =

(x+ 1)−s. Then A(x) = [x], so A(x) ≤ x and

lim
x→∞

A(x)g(x) = lim
x→∞

x

(x+ 1)s
= 0

if Re s > 1. So we have

ζ(s) =
1

1s
+

∞∑
n=1

1

(1 + n)s
= 1 +

∞∑
n=1

ang(n),

so applying (17) we get

ζ(s) = 1−
∫ ∞

1

A(t)g′(t) = 1−
∫ ∞

1

[t](−s)(t+ 1)−s−1dt =

= 1−
∫ ∞

0

[t](−s)(t+ 1)−s−1dt = 1 + s

∫ ∞
1

[t− 1]

ts+1
dt =

= 1 + s

∫ ∞
1

t− 1− {t}
ts+1

dt =

= 1 + s

∫ ∞
1

dt

ts
− s

∫ ∞
1

1

ts+1
dt− s

∫ ∞
1

{t}
ts+1

dt =

= 1 + s 1
s−1 − s 1

s − s
∫ ∞

1

{t}
ts+1

dt.

So we get the expression

(18) ζ(s) = 1 +
1

s− 1
− s

∫ ∞
1

{t}
ts+1

dt.

Note that {x} is bounded by 1, so the latter integral converges whenever Re s > 0.
Moreover, the latter integral is∫ ∞

1

{t}
ts+1

dt =

∞∑
n=1

∫ n+1

n

t− n
ts+1

dt.

By Weierstrass M -test this series converges uniformly on the region Re s ≥ σ0 > 0,
since ∣∣∣∣∫ n+1

n

t− n
ts+1

dt

∣∣∣∣ ≤ 1

nRe s+1
.

Note further, than each
∫ n+1

n
t−n
ts+1 dt is analytic on the domain Re s > 0 (the integral

can be evaluated explicitly), so by Weierstrass theorem, the sum of series is analytic
function on that domain. Now we see that (18) defines a meromorphic function on
the right half plane Re s > 0, and this function coincides with

∑
1
ns on the domain

Re s > 1. (Moreover, note that the function ζ has only one pole, at s = 1, it’s a
simple pole with res

1
ζ = 1.)

So the formula (18) extends ζ to the domain Re s > 0, and now the statement of
Riemann Hypothesis makes sense. Note that through a more complicated reasoning
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one can extend ζ to the whole complex plane C. In that case ζ is still meromorphic
with a unique pole at s = 1, and essential singularity at ∞. Moreover, ζ has zeros
at even negative numbers: 0 = ζ(−2) = ζ(−4) = . . .. These are called trivial zeros
of ζ. The Riemann Hypothesis states that aside from trivial zeros, all zeros have
real part 1/2. (It is not a significant change over the previous statement in the
beginning of the Section that we fully understand; but it is usually the way you
will see the Riemann Hypothesis stated, so it is worth it to include it here even
though we haven’t done the work to extend ζ to Re s < 0.)

Riemann Hypothesis. All nontrivial zeros of Riemann zeta-function ζ(s) are
located on the vertical line Re s = 1

2 .

Riemann Hypothesis is one of the most important unsolved problems in math-
ematics, (arguably) of the same caliber as (solved) Fermat Theorem, (solved)
Poincaré Conjecture, P versus NP, Navier–Stokes existense/smoothness, and few
others (see Millennium Prize Problems for the list). Proving or disproving Rie-
mann Hypothesis would give a deep insight into several areas of mathematics, most
immediately Number Theory and distribution of primes.
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